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Motivation: Longitudinal Differential Abundance

Researchers are interested in the interaction between oral squamous cell
carcinoma (OSCC) development, oral microbiome, and the DMBT1 gene.

To study this interaction, mice were bred with (WT) and without (KO) the
DMBT1 gene and a carcinogen was introduced to induce OSCC development.
Microbial samples were collected over time and histopathology was per-
formed at the end of the study period.

Available data: for each of the 65 mice
■ Genotype (DMBT1: KO or WT)
■ OTU counts at up to 6 times points (0, 4, 8, 12, 16, 22 weeks)
■ Diagnosis at week 22 (hyperplasia, carcinoma in situ, SCC)
■ Sex (known to be associated with microbiota and diagnosis)
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Problem Formulation & Desirata

Function-on-scalar regression: for subject i
■ tij: sampling time of the jth measurement
■ yij “ yiptijq: response at time tij
■ xi: covariates assumed to have a time-varying effect
■ ui: covariates assumed to have a time-constant effect

Desired properties:
■ Local sparsity to identify time points of differential effects
■ Smoothness to borrow strength from neighboring time points
■ Account for dependency to improve efficiency
■ Allow multiple covariates, more than a dichotomous group identifier
■ Allow irregular designs (missing or irregularly-sampled data)

Existing Solutions & their Limitations

Cross-sectional differential abundance (ALDEx2, DESeq2, ANCOM, etc.)
■ Does not account for time dependence and cannot borrow strength from

neighboring time points

Locally sparse kernel/spline methods (e.g., Kong, 2015)
■ Does not account for time dependence

Dependent kernel/spline methods (e.g., Wang, 2003)
■ Does not yield a sparse estimate

SPFDA: a locally sparse dependent spline model (Wang, 2023)
■ Requires regular sampling times

Varying Coefficient Mixed Model

Mean model: semi-varying coefficient model
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where κp¨, ¨q is the covariance kernel.
■ We do not need the true covariance structure to get substantial

efficiency gains compared to an independence assumption.
■ Instead of estimating the covariance kernel κ, we rather specify a working

covariance model, where κ is parameterized by a few scalar
quantities.

■ For example, the compound symmetry structure (eq., a random intercept
model or the exchangeable structure) assumes κptij, tikq “ ρ.

Kernel Smoothing

To obtain a smooth estimate of the time-varying coefficients βptq, we proceed
to a locally constant approximation.

For each time point of interest t, and given a kernel function khpsq “ kps{hq{h,
we consider the seemingly unrelated kernel estimating equation (Wang,
2003)

řN
i“1 XJ

i WiptqV´1
i ryi ´ µis “ 0

where Wiptq “ diag
´

khpt, tijq, j “ 1, . . . , ni
¯

and where Xi “ 1xJ
i .

Why not splines?
■ Kernel smoothing is more straightforward to induce local sparsity. To

obtain βjptq “ 0, we simply need to use shrinkage at t; with splines, we
need consecutive spline weights to be 0, which requires overlapping
group shrinkage (see, e.g., Wang, 2023.)

Local & Global Sparsity

We impose a sparse group Lasso penalty (Simon et al., 2013) over the
evaluation of βptq over a range of pre-specified time points t, namely bj “
´

βjptp1q, . . . , βjptpTq
q

¯

, grouped across covariates j “ 1, . . . , px:
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■ The group Lasso penalty encourages global sparsity (βjp¨q ” 0.)
■ The Lasso penalty encourages local sparsity (βjptq “ 0 for some t.)
■ We further consider the adaptive sparse group Lasso (Poignard, 2020) to

reduce shrinkage bias.

Estimation

We alternate between estimation of mean and covariance parameters:
■ Mean parameters updates are obtained by proximal gradient descent
■ Covariance parameters updates are obtained by Newton-Raphson steps

Selection of tuning parameters (regularization parameter λ and kernel scale
h) is performed through an information criterion (EBIC).

Simulation Experiments

■ 100 datasets, each with 100 subjects split into two groups
■ Group difference on the second half of the range
■ Longitudinal effect: per-subject random intercept
■ 11 sampling points per subject, half of which are discarded
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Real Data Application

For each clr-transformed OTU, we consider the following mean model:

1(Week) + Sex(Week) + Genotype(Week) * Diagnosis(Week)

Repeat for each of 187 OTUs, report those with Genotype or Diagnosis effects.
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Extensions, Variants & Future Work

The current approach (Gaussian model on CLR-transformed response) may
not be the most approach for microbial counts:
■ GLM with other families (e.g., negative binomial)
■ Multivariate model to account for correlation between taxa and

compositional effects
■ Zero-inflated model to account for excess zeros

Local linear approximation (instead of constant) could improve fit (& sparse
derivatives could be of interest)

Additional working covariance structures, especially AR(1)

Alternative regularization, such as the SCAD penalty

Uncertainty quantification, such as bootstrap or asymptotic confidence inter-
vals, or probability of inclusion

Summary

We propose a novel approach to function-on-scalar regression based on kernel
smoothing producing locally sparse estimates of the functional coefficients
with no requirements on the sampling design.

Our method improves both estimation accuracy and identification of time
points with differential effects, compared to the independence covariance
assumption and the SPFDA method.
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