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1 Introduction

Longitudinal analysis of mortality rates can provide signi�cant insight to multiple levels of public

o�cials. Indeed, observing an increase in mortality rate within some speci�c demographic group

indicate that more attention has to be devoted to that group and its mortality patterns. In particular,

when such an increase is attributed to a speci�c cause, this can warrant and guide targeted intervention.

For example, studies [Masters et al., 2017, Monnat, 2017, Woolf and Schoomaker, 2019] have

found recent increases in mortality rates due to suicides, drug poisonings and alcohol-related illnesses,

especially among middle-aged Americans. In turn, these mortality causes have been shown to be

associated with unemployment [Institute for Work & Health, 2009, Henkel, 2011] whose rates reached

historical highs during the Great Recession (2007-2009): Margerison-Zilk et al. [2017] �nd increased

morbidity, psychological distress and suicide rate in the years following the event. The authors also

claim that the U.S. was more severely impacted than European countries with stronger social safety

nets. With the current COVID-19 epidemic, one can anticipate a second wave of increased mortality�

this time not due the disease itself, but rather to its economic impacts. These considerations thus

instruct increased government intervention in economic recovery as well as in mental illness prevention

and treatment. Additionally, the ongoing opioid epidemic in the U.S.�possibly in conjunction with

the economic situation�is a major contributing factor in the increase in mortality due to drug overdose

and may call for improved detection, prevention and treatment as well as further substance control

both within the U.S. and at its borders.

In order to act on these issues, they must �rst be detected. While time series of mortality rates

can be particularly noisy, especially when considering smaller demographic groups or smaller mortality

rates, it is important to be able to extract trends and patterns among them to conclude some variation

is associated with a cause or a demographic. In this analysis, we analyze recent U.S. mortality data

aggregated by sex and age to study what trends and patterns can be identi�ed in mortality trajectories.

Since all mortality causes are aggregated, we cannot directly con�rm results such as those presented

above: our analysis can be understood as a blueprint for de-noising mortality time series and the same

methodology could be applied to �ner data such as mortality rates per cause or by ethnicity and race.

As a sanity check, we attempt to correlate our �ndings with those presented in literature.

1.1 Data Overview

We consider U.S. mortality rates from 2007 to 2018 extracted from the National Vital Statistics System

[2020] and kindly aggregated by age group and sex by the examiners. The data set contains monthly

death counts as well as yearly population estimates of each demographic group who are de�ned by sex

(Female or Male) and age group (�ve years intervals for age 0 to 84 and 85 to 99). Hence, we have

72 time series (2 sexes × 18 age groups × 2 measurements), 36 of which are of length 144 (12 years

× 12 months) for death counts and 36 of length 12 (12 years) for population estimates. We report

no missing data. Figure 1 depicts the log mortality rate for those 36 demographic groups along the

period of interest.

1.2 Research Questions

Our main research question is to identify what trends and patterns can be extracted from monthly

mortality trajectories. We are particularly interested in building a model for deaths counts including
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Figure 1: Log mortality rate (using the exposure described in the text) by sex and age groups.
Solid lines corresponds to females and dashed lines to males. The color gradient de�nes the
sequence of age groups from 0-4 years old (blue) to 85-99 years old (green).

estimated population, time e�ect, month e�ect and demographic information. The time e�ect will

inform us on the average mortality rate of a demographic as well as extracting the trend over time of

that rate; the month e�ect can tell us about seasonal patterns. The demographic information then

allows us to model how these trends and patterns change with respect to sex and age group.

Emerging from the main question of interest are some secondary modeling consideration. First,

death counts correspond to large positive integer data and many distribution assumptions could be

used for our model: appropriate selection and diagnostic has to be performed. Second, the way in

which each covariate (time, month, demographic group) in�uences the response and interact with each

other has to be speci�ed and selected.

Finally, we wish to learn a low-dimensional representation of mortality time series enabling us to

easily describe and compare di�erent time series: complex interaction between the di�erent covariates

may prevent us from extracting relevant insights from simply inspecting the marginal e�ect of each

covariate.

2 Methodology

2.1 Data Pre-processing

Age Group Midpoints. Within a given age group, the distribution of ages may not be evenly

distributed. In particular, older age groups will contain more people in the lower end of the interval:

for example, we expect much more 85 years olds than 99 years olds in the 85-99 age group. Since

some of the model we will consider use the age groups as a numerical value, we cannot simply use

the midpoint of each interval as it would bias the actual average age within a group. To account for

that fact, we will rather use a midpoint computed using linear interpolation. For each month, year,

sex and age group, we identify a trend as the slope between the previous age group and the next age

group (for �xed month, year and sex) and assume the current group's distribution follows the same

slope. For the 0-4 age group, we set the previous age group's population as the same as group 0-4; for

the 85-99 age group, we set the next age group's population to 0. The process is repeated for every

month and year and by sex. In practice, the estimated midpoint for age groups up to 45 years old are

3
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Age Groups Midpoint Estimation

Age group ... 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-99

Midpoint ... 47.00 52.00 57.00 62.00 67.00 72.00 77.00 82.00 92.00
Estimated ... 47.03 51.97 56.89 61.81 66.74 71.72 76.71 81.77 89.33

Table 1: Average estimated midpoints per age group. Groups below 45 years are estimated
almost exactly to the true midpoint of the corresponding interval.

virtually the same as the true midpoint (the age pyramid is rather �at on that range); Table 1 contains

the average (over all 144 months and sexes) estimated midpoint for each age group. We experimented

with naive and estimated midpoints and found that the estimated ones perform slightly better in our

models (not reported for brevity).

Estimated Monthly Population. The original data contains only the yearly estimated population

in each demographic group. However, we have access tomonthly death counts: computing the mortality

rate using the yearly population may not be an accurate measurement. Instead, we will estimate a

monthly population within each demographic group using linear interpolation. For a �xed sex and

age group, we set the population of month 6 of every year to be the yearly population and interpolate

linearly between those 12 points; the monthly population beyond those points is set to be constant.

Figure 2 shows an example of the interpolation performed for females between 0 and 4 years old. The

result is a continuously varying population and attenuates drastic changes in population: it is highly

unlikely that the population of females between 0 and 4 years old dropped by over 500,000 on 2012's

New Year Day. We experimented using the estimated yearly and monthly populations in our models

and found that the monthly population exhibited marginally improved performance (not reported for

brevity). From here on, population will refer to estimated monthly population without ambiguity.
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Figure 2: Example of the linear interpolation estima-
tion of the monthly population described in the text.

Exposure and Daily Mortality Rate. In

the �rst iterations of the current analysis, we

identi�ed a pattern of decrease in mortality rates

in the month of February which was trivially ex-

plained by the shorter length of that month. In-

deed, with less time, we expect less people to

die. This justify to rather consider daily mortal-

ity rates instead of monthly rates. To achieved

this, we compute the monthly exposure of a pop-

ulation as the product of its population and the

length (in days) of that month. From here on,

mortality rate refers to the death count divided

by the exposure of that demographic group dur-

ing a given month.

2.2 Data Exploration

In order to summarize mortality trajectories for analysis and comparison, we consider a Principal

Component Analysis (PCA) of the 36 log mortality rate time series. The study of the most important
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components can unveil what properties of a trajectory are useful at describing it by capturing most

of its variations. Then, comparing the scores of the time series by sex and age group can guide us

toward a model description of the interactions between demographic and time. This will eventually

help us de�ning the mean model requiring the speci�cation of how covariates act on the response and

how they interact with each other.

Furthermore, the same process can be repeated on the �tted values emanating from the selected

model. Indeed, we can reconstruct the de-noised time series and perform PCA on them. This will

tell us what our model understand from the collection of time series and the comparison between

demographic groups will then allow us to extract insight on how mortality trajectories di�er between

groups when noise has been removed.

Note that we choose to act on the logarithm of the mortality rate for multiple reasons. First,

the models we consider all model the relationship between the death count, exposure and covariates

through a log link so performing PCA on the log rate is sensible for consistency. Second, it would be

unwise to perform PCA on the raw counts as there is more variability in larger population groups and

in groups with larger mortality rate. Third, since rates are proportions by nature, it would also make

sense to use a logit transformation instead: however, all observed rates are close to 0 (the largest is

0.017) where the two functions are almost identical.

2.3 Mortality Rate Modeling

To model death counts using exposure, time, month, sex and age group, we consider Generalized Linear

Models (GLM). We restrict our study to GLM families modeling non-negative data since death counts

are non-negative integer data. Also, to account for the exposure, we consider only mean models using

the log link which, e�ectively, implies that we model the mortality rate and not the counts directly.

Since our response is integer-valued, there are two obvious candidate families: Poisson and Negative

Binomial (NB). Both distribution allow for non-negative integer response with unbounded domain. The

main di�erence between the two families is that the Negative Binomial distribution is more suitable

to over-dispersed counts since its mean-variance relationship is quadratic in the mean instead of linear

(Poisson).

While our response is integer-values, right-continuous distributions are also relevant to our analysis.

Indeed, the observed count are large (the smallest being 51) so using a continuous family does not

su�er from the discretized values. Thus, we consider a Normal GLM with log link which has variance

exponential in its mean and can then model severely over-dispersed data. Finally, we also consider a

Tweedie model with power 1.5 which can be interpreted as halfway between a Poisson model and a NB

model. Indeed, a Tweedie with power 1 is exactly Poisson and a Tweedie with power 2 is Gamma which

closely resembles a continuous version of the NB distribution. A Tweedie (1.5) model has variance

proportional to the 1.5th power of the mean.

Studying the �t of each model to the data allows us to study the over-dispersion of the death counts.

In increasing order of over-dispersion, we have: Poisson, Tweedie(1.5), NB and Normal (log link). We

inspect the Pearson residuals normalized by the estimated scale (Pearson's χ2/degrees of freedom):

better �t can be identi�ed through residuals with constant variance along �tted means values.
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3 Results

All Python code for data processing, analysis, producing tables and �gures can be found at:

https://github.com/fontaine618/qr.

Data pre-processing and manipulation was performed using pandas v1.0.3 [McKinney, 2010] and

numpy v1.18.2 [van der Walt et al., 2011], PCA using scikit-learn v0.22.2.post1 [Pedregosa et al.,

2011], GLMs using statsmodels v0.11.1 [Seabold and Perktold, 2010] and patsy v0.5.1 [Smith,

2015] and plotting using matplotlib v3.2.0 [Hunter, 2007].

3.1 Analysis of Observed Mortality Rates

Visual inspection of the log mortality rates (Figure 1) show some clear trends and patterns: increasing

age is related to increased mortality rates and to larger seasonal e�ects; there appear to be some

di�erences between males and females; young children (0-4 years olds) have higher mortality rates

than older age groups (5+ years old); etc. Performing PCA on these 36 time series yields the results

in Figure 3.

The inspection of the mean (Figure 3, 4th row) shows a clear average evolution over time�

decreasing between 2007 and 2013 and increasing afterwards�as well as a clear seasonal e�ect�high

for winter months and low for summer months. Both e�ects appear to be rather independent as the

seasonal trend seems relatively constant through years. This indicates that our model should contain

the main e�ect of time and of months.

The �rst principal component (Figure 3, 1st row), which explains 99.9% of the variance seem to

capture most of the average rate over time as well as a corresponding adjustment of the seasonal e�ect:

positive �rst components are associated with larger rates and stronger seasonal e�ect; negative �rst

components are associated with smaller rates and seasonal e�ect in the opposite direction of that of

the mean, that is, weaker seasonal e�ect when summing the two. Except for the 0-4 age group, we

see a monotone increase in �rst component with age. These observations imply we should include the

main e�ect of age, possibly interacted with sex, as well as the interaction between month and age (and

possibly sex).

The second component (Figure 3, 2nd row), which explains 46% of the remaining variance (removing

the e�ect of the �rst component), seem to capture the trend over time as well as some correction to

the seasonal e�ect. Positive second components show a relatively linear increase over time and are

observed for people between 20 and 40 years old. Negative second components show a somewhat linear

decrease over time and are observed mostly for people under 20 years old. This indicates we should

consider the interaction between time and age (and possibly sex and month, though the e�ects are less

obvious).

The third component (Figure 3, 3rd row), which explains 14% of the remaining variance (removing

the e�ect of the �rst component) seem to capture curvature over time and some seasonal e�ect. Positive

third components, observed for males in the 15-19 age group, show a positive curvature while negative

third components, observed for females of the 5-9 age group, show a small negative curvature over

time. This also indicates we should include the interaction between time, age and sex.

Overall, we consider the following model, which contains all e�ects mentioned above,

logE
{

Deaths

Exposure

}
= Age ∗ (Date+ Sex ∗ Month) ,

6
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where ∗ denotes the inclusion of both main e�ects as well as the two-way interaction. In particular,

we �nd no indication that the seasonal e�ect changes over time. In the next section, we use this model

in order to de-noise the time series in order to get a clearer version of Figure 3.

3.2 Mortality Rate Modeling

Along with the four GLM families we consider, we also investigate di�erent models for the marginal

e�ects of the covariates. In the case of the age group, we either model it continuously using the

midpoints with 9 cubic spline (denoted sA) or using the groups as categories (18 levels, denoted cA).

For the time e�ect, we either model it using the date with 50 cubic splines (denoted sD) or using the

year using 7 cubic splines (denoted sY). For the e�ect of months, we either consider 7 cubic splines

(denoted sM) or as categories (12 levels, denoted cM). Finally, the sex covariate (denoted S) only admits

two levels and any modeling will be equivalent. We therefore have 8 declinations for each family for a

total of 32 models.

Within family, we select the best model using a combination of log-likelihood, AIC and BIC: we

choose the formula where all three statistics are among the bests. The results for all families and

formulas are in Table 3; the selected models are described in Table 2. The selected formulas are

almost identical except that the Normal model with log link and the Poisson model uses months as a

categorical variable instead of using splines; age is modeled using splines and time is modeled using

splines on the date for all four families.

Log Mortality Rate: Best model by family

Family Formula Df Model MSE MSEL

Normal (log link) sA*(sD+S*cM) 737 75256 0.00198
Poisson sA*(sD+S*cM) 737 75740 0.00167
Negative Binomial sA*(sD+S*sM) 657 77497 0.00171
Tweedie (1.5) sA*(sD+S*sM) 657 76720 0.00172

Table 2: Results for the selected model within each GLM family. See text for a description of
the formulas. The MSEL is the mean squared error between the log mortality rates and the log
predicted rates.

All four families perform rather similarly in terms of prediction error. Indeed, both the mean

squared error (MSE) and the mean squared error of the logs (MSEL) do not vary much across families.

To select a model between those four candidates, we investigate how they model the over-dispersion

of the data. Figure 4 depicts the normalized Pearson residuals along the �tted means. The Normal

model with log link and the Poisson model perform badly for large �tted mean, which can be seen by

large residuals at the right end of the domain; the NB model has larger residuals for smaller �tted

means; the Tweedie (1.5) model has residuals with fairly constant variance throughout the domain.

For this reason, we choose the Tweedie (1.5) model for our �nal model as it �ts death counts uniformly

well.
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Figure 4: Pearson residuals (blue) normalized by the estimated scale; running mean (solid,
black) and ±1.96 running standard deviations from the mean (dashed, black); distribution of the
�tted means (green).

3.3 Analysis of Predicted Mortality Rates

Figure 5 contains the same procedure that was applied to the observed log mortality rates of Section 3.1,

but now performed on the �tted values resulting from our selected model. Overall, we observe the exact

same trends and patterns, but the seasonal e�ects are now much clearer to see. Also, the associations

with sex and age group are almost identical. For the mean, we still observe high mortality rates in

the winter, but we now also see a small jump in June and July, relative to other summer months, that

was not as obvious in the noisy data. In the case of component two, positive values, associated with

increase over time, seem to remove the drop in mortality rates observed around September; negative

values, associated with decrease over time seem to exacerbate that same drop. For component three,

positive values seem to strengthen the time and seasonal e�ects observed in the mean while negative

values tends to attenuate those same e�ects.

4 Discussion

4.1 Variations across Demographic Groups

Consolidating the observations regarding the principal components in Figure 5, we can �nally compare

the mortality trajectories between demographic groups de�ned by sex and age.

With respect to average mortality, we �nd that mortality rate increases with age, which is not

surprising at all due the the nature of life itself. Also, we �nd that the 0-4 years old demographic

exhibit large mortality rate as well, which could be explained by infant mortality and children diseases

that do not occur for other age groups. We also point out that males between 15 and 39 show

increased mortality rate compared with females of the same age: this e�ect is most likely due to

increased mortality caused by of accidents, substance abuse and homicides within that demographic

[Masters et al., 2017, Woolf and Schoomaker, 2019].

With respect to change over time, we �nd that the overall mortality rate decreased from 2007 to

2013 and increased between 2013 and 2017. During those years, however, we �nd that people under the

age of 20 have shown a small decrease in mortality rate with respect to the mean trend and that people

between the age of 25 and 39 have shown a larger increase in mortality compared to the mean. The

decrease for children is partly due to a decrease in infant mortality [Callaghan et al., 2017] and to other
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factors such as decrease in traumatic brain injuries [Cheng et al., 2020] while the increase for middle-

aged people can possibly be attributed to the increased in suicides and substance abuse-related deaths

discussed in the introduction. Another factor contributing to that increase is the relative increase of

deaths related to obesity [Preston et al., 2018].

With respect to seasonal e�ects, the picture is slightly more complicated as the mean and all three

components capture part of that e�ect. The overall e�ect is higher mortality rates during winter

month (December-March) and lower mortality during the rest of the year with a small jump during

June and July, but that e�ect seems only apparent for elderly people. There are many possible

factors explaining this e�ect. First, winter months corresponds to �u season and �u-related death are

majoritively observed within the older population [Center for Disease Control and Prevention, 2020].

Similarly, cardiovascular-related mortality was shown to peak during winter [Stewart et al., 2016].

Second, June and July corresponds to some of the warmer months of the year and the elderly show

increased risk heat-related illnesses during heatwaves [Cheng et al., 2018].

4.2 On the Analysis
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Predicted Log Mortality Rate: Residual Autocorrelation

Figure 6: Autocorrelation function of the Pearson
residual series (blue) and their mean (black).

A major weakness of our modeling approach is

the failure to account for time dependency. In-

deed, mortality time series are inherently auto-

correlated since a very large fraction of each

demographic group is contained in consecutive

months. The GLM approach considered here im-

plicitly assume conditional independence of the

count given the covariates. Therefore, we would

need that, given the time (year and month) and

given a demographic group and its exposure, the

death count is independent from any other con-

�guration. One way to check if this assumption

is reasonable for our data is to look at the time

series of the Pearson residuals. Under the assumption that our model is correct, the Pearson residuals

should have constant variance and be uncorrelated. Hence, the time series of Pearson residuals should

resemble a white noise series. Inspection of the auto-correlation function of all 36 series of residuals,

shown in Figure 6, indicates that there remains some very minor auto-correlation. Some series show

stronger correlation on small lags and others show some residual seasonal e�ect, but the overall trend

does not show severe problems. This further indicates that we have successfully extracted most of the

signal in these 36 time series.

On another note, the Negative Binomial and Tweedie (1.5) both seem to perform well when we

inspect the Pearson residuals (Figure 4), but they seem to the �t the data di�erently well on opposing

ends of the domain. Since NB is closely related to a Tweedie (2), it could interesting to further tune the

Tweedie power to �nd an even better model (most likely with a power between 1.5 and 2) using pro�le

likelihood [Dunn and Smyth, 2005] or the method described in Dunn and Smyth [2018]. Emerging

from our analysis is that death counts are over-dispersed with respect to a Poisson model with an

optimal mean-variance relationship that is polynomial with a power somewhere between 1.5 and 2.
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Figure 5: Results from the PCA on the �tted log mortality rate trajectories using the selected
model. The �rst three rows contain, for the �rst three principal components respectively, (left)
the plot of the minimum and maximum e�ect of the component and (right) the value of the
component by sex and age group. The fourth row contains the mean of the data (left) through
years and (right) by months.
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A Supplemental Results

Log Mortality Rate: GLM Results

Formula Log likelihood Df Model AIC BIC MSE MSEL

Negative Binomial

sA*(sD+S*sM) -45161 657 91638 -38704 77497 0.00171
cA*(sD+S*sM) -45161 1115 92553 -34787 76677 0.00160
sA*(sD+S*cM) -45161 737 91798 -38020 77085 0.00165
cA*(sD+S*cM) -45161 1223 92769 -33863 76283 0.00153
sA*(sY+S*sM) -45177 229 90813 -42333 127625 0.00805
cA*(sY+S*sM) -45162 413 91152 -40789 113083 0.00206
sA*(sY+S*cM) -45177 309 90973 -41649 127015 0.00799
cA*(sY+S*cM) -45162 557 91439 -39558 112410 0.00198

Poisson

sA*(sD+S*sM) -33916 657 69148 -20377 76152 0.00173
cA*(sD+S*sM) -33594 1115 69419 -17105 75507 0.00160
sA*(sD+S*cM) -33808 737 69092 -19910 75740 0.00167
cA*(sD+S*cM) -33482 1223 69413 -16404 75110 0.00154
sA*(sY+S*sM) -45254 229 90968 -1362 119946 0.01116
cA*(sY+S*sM) -38502 413 77832 -13293 110458 0.00208
sA*(sY+S*cM) -45115 309 90851 -956 119314 0.01111
cA*(sY+S*cM) -38329 557 77774 -12407 109777 0.00200

Tweedie (1.5)

sA*(sD+S*sM) -29492 657 60301 -38463 76720 0.00172
cA*(sD+S*sM) -29374 1115 60980 -34561 76012 0.00160
sA*(sD+S*cM) -29438 737 60352 -37785 76304 0.00166
cA*(sD+S*cM) -29322 1223 61093 -33643 75618 0.00154
sA*(sY+S*sM) -32817 229 66093 -41470 122236 0.00887
cA*(sY+S*sM) -30289 413 61406 -40459 111520 0.00206
sA*(sY+S*cM) -32799 309 66218 -40792 121610 0.00880
cA*(sY+S*cM) -30234 557 61583 -39235 110842 0.00199

Normal (log link)

sA*(sD+S*sM) -36497 657 74311 392200895 75664 0.00205
cA*(sD+S*sM) -36524 1115 75281 389137003 75072 0.00161
sA*(sD+S*cM) -36489 737 74455 390086877 75256 0.00198
cA*(sD+S*cM) -36526 1223 75501 387072493 74673 0.00154
sA*(sY+S*sM) -37636 229 75732 613341153 118322 0.05572
cA*(sY+S*sM) -37446 413 75719 568589935 109690 0.00211
sA*(sY+S*cM) -37624 309 75868 610044032 117686 0.05568
cA*(sY+S*cM) -37437 557 75990 565049572 109006 0.00203

Table 3: Results from the 4 GLM families and 8 formulas �tted on the log mortality rates. See
text for a description of the formulas. The MSEL is the mean squared error between the log
mortality rates and the log predicted rates.
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