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Abstract. We propose an alternating direction of multipliers method (ADMM) based on the
consensus scheme for solving regularized multi-task problems where the loss function is separable
across tasks. We discuss the convergence of the algorithm and survey its statistical properties
in the sparse group Lasso case. Through numerical experiments, we find that our proposed
method can be particularly efficient in the number of proximal evaluations required to achieve
convergence when compared to a more general method such as FISTA.

1. Introduction

Suppose we have a collection D = ∪Kk=1Dk of K datasets Dk = {(X(k)
i , Y

(k)
i )}nki=1 ⊂

Rp×R and wish to model the relationship between the features X
(k)
i and the response

Y
(k)
i by minimizing the following objective function,

F (β | D) = L (β | D) + λP (β) (1.1)

where L is a loss function of the parameters β ∈ Rp×K that is L-strongly smooth, in the
sense ∇2 L (β | D) � LIKp uniformly in β, λ > 0 is a tuning parameter, and P > 0 is a
convex regularization term.

The structure of the problem assumes that all K datasets share the same number of
features p: in particular, this multi-task setting is often used when the K datasets share
the same p features. In that case, we model the relationship of these p features to K
different types of outcomes. We identify two common cases where such structure exists:
multiple outcomes are measured on the same observational unit (the multivariate setting)
and a single outcome is measured for each unit, but the same features are available.

When the K responses are related, we expect the parameter of interest β so exhibit
some interesting structure. A common choice of regularization P inducing sparsity at
the feature level as well as at the within-feature level is the sparse group Lasso penalty
(Simon et al., 2013), Pα,q (β) =

∑p
j=1 α||βj ||1 + (1−α)||βj ||q, where α ∈ [0, 1] is a tuning

parameter controlling the mixing of the group and individual sparsity, and where q is
often chosen to be 2 of ∞.
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Now, most methods of fitting such models do not fully exploit the separability structure
of L or of P and optimize naively the original problem (1.1). However, in most cases,
such separability exists so we can apply an alternating direction of multipliers method
(ADMM) to take advantage of it. For example, the loss function may be separable across

tasks or may depend only on linear predictors η(k) = X(k) β(k); the penalty is often
separable across features (e.g., the sparse group Lasso).

2. Algorithm

Consensus ADMM scheme Suppose the loss function L is separable across the
K tasks, in the sense that it can be split in a sum of losses depending only on β(k),
k ∈ [K], that is, L(β | D) =

∑K
k=1 L

(k)(β(k) | D). In that case, we consider the following
augmented problem, reminiscent of the consensus ADMM (Boyd et al., 2011, Section
7.1.1), where we introduce copies of β(k) for each loss,

minimize
β,B

K∑
k=1

L(k)(B(k) | D) + λP (β)

subject to B−β = 0,

where B ∈ Rp×K . The corresponding (scaled) augmented Lagrangian is then given by

L (β,B,D) =

K∑
k=1

L(k)(B(k) | D) + λP (β) + ρ 〈D,R〉+
ρ

2
〈R,R〉 ,

where D ∈ Rp×K is a Lagrange multiplier, R = B−β and ρ > 0 is the ADMM regular-
ization parameter. The sequential updates are given by

B(k)[t+ 1] = arg min
B(k)

L(k)(B(k) | D) +
ρ

2

∣∣∣∣∣∣B(k)−(β(k)[t]−D(k)[t])
∣∣∣∣∣∣2

2
, k ∈ [K], (2.1)

β[t+ 1] = proxλP /ρ (B[t+ 1] + D[t]) , (2.2)

D[t+ 1] = D[t] + R[t+ 1]. (2.3)

We note that the B(k) updates are `2-regularized problems and the β update is a simple
proximal operator. This scheme can be particularly efficient in the case that L(k) depends
only on D(k), i.e., L(k)(B(k) | D) = L(k)(B(k) | D(k)): indeed, the optimization can be
easily parallelized and distributed. If the loss function is not separable across k ∈ [K],
the same procedure can be performed, but the update (2.1) can no longer be split into
K optimization problems.

Alternative ADMM schemes We also consider algorithms using the sharing ADM-
M scheme where, instead of copying the matrix of coefficients β into B, we clone linear



ADMM for Regularized Multi-task Regression 3

predictors. The alternating steps therefore correspond to minimizing the loss w.r.t. lin-
ear predictors and finding the coefficients best approximating the linear predictors. In
particular, three types of sharing scheme can be defined: the first, following Boyd et al.

(2011, Section 7.3), introduces partial linear predictors η
(k)
j = X

(k)
j β

(k)
j , j ∈ [p], k ∈ [K];

the second acts on the linear predictors η(k) = X(k)β(k), k ∈ [K]; the third, following

Xiao, Wu and He (2012), introduces residuals R(k) = Y (k) − X(k) β(k) and therefore
only applies to losses depending on residuals only (e.g., least squares). Details of these
algorithms are given in Appendices A.2 to A.4, respectively. We find that the sharing
schemes do not perform as well as the consensus scheme for the regularized multi-task
problem and we thus only consider the consensus method in the main text.

Solving the subproblems In our proposed schemes, we identify two types of sub-
problem we need to solve. First, update (2.2) is an explicit proximal operator and can
be solved exactly for many choices of regularizations (see, e.g., Combettes and Pesquet,
2011). For sparse group Lasso penalty, we have analytical solutions for q = 2 as well as
q = ∞ (Jenatton et al., 2011); solutions for general q > 1 can be found in Liu and Ye
(2010). Second, updates (2.1) corresponds to a ridge-regularized differentiable loss and
can be solved using first-order methods such as Nesterov’s (Nesterov, 1983).

3. Theoretical Properties

Convergence We explore the literature and prove that our optimization algorithm will
indeed converge to the optimal. Eckstein and Bertsekas (1992, Theorem 8), whose details
are given in Appendix A.5, has discussed convergence properties of inexact ADMM. As
a consequence, we only need to make sure each sub-problem has been well optimized.

In the case of consensus ADMM, the algorithm is guaranteed to reach optimal value
so long as ∣∣∣∣∣∣∣∣B[t+ 1]− arg min

B
L (β[t],B,D[t])

∣∣∣∣∣∣∣∣
2

≤ µt,

for a summable sequence of thresholds
∑
µt < ∞. Indeed, the updates of β in (2.1)

are an explicit proximal operator and an exact solution is generally available for most
regularization P. Now, the ridge problem (2.1) is solved using an accelerated first-order
method which guarantees convergence provided the loss function L is L-strongly smooth.
Furthermore, the quadratic term introduced by the ADMM renders the objective of (2.1)
to be ρ-strongly convex, which generally helps convergence.

Statistical Properties Here we discuss some statistical properties of sparse group
lasso problem with literature in regularized M -estimators. Negahban et al. (2012) and
Lee, Sun and Taylor (2013) introduced unified analysis framework for sparse models
with decomposable regularizers. Decomposability of penalty w.r.t. model sparsity struc-
ture plays an important role here, and many problems fit into such framework: sparse
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linear model with `1 penalty; or group-structured sparse model with `1,q penalty. Both
consistency and convergence rates are given in Negahban et al. (2012).

Sparse group lasso penalty, however, does not directly fit into the framework afore-
mentioned due to its corresponding complex sparsity structure. It is decomposable under

hierarchical structure: namely, β
(k)
j = 0 if ||β(k)||1 = 0. To this end, sparse group lasso

penalty is decomposable w.r.t. group sparsity structure, just like group lasso. In Chatter-
jee et al. (2012) the authors followed decomposable framework and showed consistency
results w.r.t group sparsity structure. But this is not satisfactory, since sparse group lasso
is originally proposed to reveal in-group sparsity structure.

Another line of works try to overcome this shortage by assuming additive structure of
parameters with different types of sparsity structures. For example, recently authors of
Yang and Lozano (2017) considered

minimize
Θ

L(Θ) + ||Θ||λ,

where ||Θ||λ = inf
α+β=Θ

(λ1||α||1 + λ2||β||1,q). This is closely related to sparse group lasso

problem, but still not the same.

4. Implementation

We implement both proposed ADMM schemes, along with an accelerated proximal gra-
dient method (FISTA), for solving arbitrary regularized losses in a Python package. 1

The only requirements are (1) that the loss and its gradient w.r.t. β are readily available,
(2) the loss has a known and computable Hessian upper bound and (3) the regularization
is convex and has a computable proximal operator.

The least squares and multi-label logistic regression losses are implemented as well as
the sparse group Lasso regularization. Furthermore, the solution path (along a sequence
of λ values) is implemented and it is possible to initiate it automatically to the smallest
λ value yielding a null model (by studying the KKT conditions with β = 0). Finally, we
use the warm-start trick to speed-up the optimization.

5. Numerical experiments

In order to assess the performance of the consensus algorithm, we procede with two
numerical experiments comparing the results to optimization using Consensus ADMM
to FISTA. To put both algorithms on equal footings, we opt to compare convergence
w.r.t. the number of gradients computed as well as to the number of proximal oper-
ations performed—the two computational bottlenecks in both algorithms. Indeed, the
raw number of iterations would put ADMM at an advantage since more work is done at
each step. Also, we refrain from commenting on computing time since it would depend on

1Available at https://github.com/fontaine618/MTSGL.

https://github.com/fontaine618/MTSGL
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the implementation. We note that the K ridge problems solved by ADMM can be easily
parallelized so the number of gradients computed—as well as computing time—should be
divided across workers; yet, we report the serial statistics to produce a fair comparison.

Multi-task Least Squares Regression In this first experiment, we consider a multi-
task least squares problem with n = 3000 observations split into K = 5 tasks each having
p = 100 features; the true β is generated to be sparse across features as well as within
features (across tasks). The full solution path is computed starting from the smallest λ
value such that β = 0 and ending at 1/100th of that value. Similar convergence criterion
are used for both algorithm. Furthermore, we proceed at optimizing the problem for
λ = 0.3 starting from β = 0.
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Figure 1: Multi-task least squares regression experiment results. Number of gra-
dient computed (blue) and number of proximal operations (green) and computing
time (red) by the consensus ADMM (solid) and the FISTA (dashed) algorithms.

Results for the solution path, contained in Figure 1(a)2, show that consensus ADMM
requires significantly less proximals to achieve the same convergence as FISTA summed
over all solution path iterations. Results for a single problem, in Figure 1(b), indicate
that FISTA achieves faster convergence in terms of gradients and similar convergence in
terms of proximals when the problem is initialized at β = 0.

Multi-label Classification In this second experiment, we consider a multi-label clas-
sification problem with n = 1000 observations split into K = 50 tasks each having
p = 50 features. This setting is therefore of the high-dimensional case p > n since there
are Kp = 2500 parameters, but only a fraction of those are truly non-zero. The solution
path again starts from the smallest λ with β = 0 until 1/20th of that value. Furthermore,
we proceed at optimizing the problem for λ = 0.02 starting from β = 0.

Results for the solution path, contained in Figure 2(a), show that consensus ADMM
again requires much fewer proximal evaluations than FISTA to yield similar convergence

2Code for all results can be found at https://github.com/fontaine618/MTSGL under experiments.

https://github.com/fontaine618/MTSGL
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Figure 2: Multi-label classification experiment results. Number of gradient com-
puted (blue) and number of proximal operations (green) and computing time (red)
by the consensus ADMM (solid) and the FISTA (dashed) algorithms.

when the whole path is considered. The improvement seems to emerge mostly in the
first few iterations. Results for a single problem, in Figure 2(b), show that consensus
ADMM achieves faster convergence in terms of proximals, but similar to FISTA in terms
of gradients.

6. Discussion

We proposed an ADMM scheme for solving regularized multi-task regression problems
relying on the separability of the loss function across K task. Alternating between K
ridge problems and a single proximal operator, our algorithm is easily parallelizable, as
the data is only used within each K ridge updates, with minimal communication (only

β(k), B(k) and D(k) have to be exchanged).
Simulation studies show that this consensus ADMM algorithm is particularly econom-

ical in the number of proximal operations performed compared to a general method such
as FISTA, especially in the high-dimensional case; this observation can inform on the
applicability of the method. Indeed, problems with large K or with expensive proximal
may greatly benefit from such a scheme. For example, the sparse group Lasso with q =∞
requires a `1-projection which is typically done through sorting in O(K logK)3 and an
algorithm performing as few proximal evaluation as possible should be preferred.

Our proposed method appears greedier than FISTA in terms of gradients computed
particularly when optimizing a single problem. Improved tuning of the threshold sequence
and of the quadratic penalty parameter ρ can potentially fix these issues. When a whole
solution path is considered, we observe more encouraging results: the warm-start trick
seems really beneficial for fast convergence of the consensus ADMM.

3Other methods (e.g., Duchi et al., 2008) have expected complexity O(K) but worst-case O(K2).
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Appendix A: Additional ADMM Schemes and
Further Details

A.1. Consensus ADMM

Let r(k) = B(k)−β(k) denote the primal residuals and s(k) = ρr(k) denote the dual
residuals. Then, following Boyd et al. (2011, Section 3.3), a stopping criteria can be
defined using ∣∣∣∣∣∣r(k)

∣∣∣∣∣∣
2
6 εprimal

∣∣∣∣∣∣s(k)
∣∣∣∣∣∣

2
6 εdual,

where,

εprimal =
√
Kpεabs + εrel [||β||2 ∨ ||B||2]

εdual =
√
Kpεabs + εrel ρ||D||2,

for some fixed εabs > 0 given by the problem context and εrel typically of the order of
10−3 or 10−4.

A.2. Sharing ADMM

This is the approach in Boyd et al. (2011, Section 8.3), where we need only the separability
of the linear predictor and of the penalty across j; in particular, this extends to objective
functions that is not separable across k.

Introduce the partial linear predictors η
(k)
j ∈ Rnk , k ∈ [K], j ∈ [p]. Then, we can

considered the following augmented problem:

minimize
β,l

K∑
k=1

L(k)

Y (k),

p∑
j=1

η(k)

+ λP (β)

subject to η
(k)
j −X

(k)
j β

(k)
j = 0, k ∈ [K], j ∈ [p].

The corresponding augmented Lagrangian is given by

L (β, η,m) =

K∑
k=1

L(k)

Y (k),

p∑
j=1

η(k)

+ λP (β) +

K∑
k=1

p∑
j=1

〈
m

(k)
j , η(k) −X

(k)
j β

(k)
j

〉
+

ρ

2

K∑
k=1

p∑
j=1

〈
η(k) −X

(k)
j β

(k)
j , η(k) −X

(k)
j β

(k)
j

〉
,
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where m
(k)
j ∈ Rnk , k ∈ [K], j ∈ [p], is a Lagrange multiplier and ρ > 0 is the ADMM

parameter. The update of β is given by

βj [t+ 1] = arg min
βj

λP
(
βj
)

+
ρ

2

K∑
k=1

∣∣∣∣∣∣∣∣X(k)
j β

(k)
j −

(
η

(k)
j [t] +

1

ρ
m

(k)
j [t]

)∣∣∣∣∣∣∣∣2
2

.

Now we consider the update steps for η. Since we are mostly interested in the sum of the
partial linear predictors, we can use ideas from sharing (Boyd et al., 2011, Section 7.3).
Consider

a
(k)
j := X

(k)
j β

(k)
j [t+ 1]− 1

ρ
m

(k)
j [t], ā(k) :=

1

p

p∑
j=1

a
(k)
j ,

We can write the optimization for the update of η as

minimize
η,η̄

K∑
k=1

L(k)
(
Y (k), pη̄(k)

)
+
ρ

2

K∑
k=1

p∑
j=1

∣∣∣∣∣∣η(k)
j − a

(k)
j

∣∣∣∣∣∣2
2

subject to η̄(k) − 1

p

p∑
j=1

η
(k)
j = 0, k ∈ [K].

An optimal solution will be such that

η
(k)
j − a

(k)
j = η̄(k) − ā(k),

so that we can first solve for the mean linear predictor η̄(k) and then compute the partial
linear predict updates. Thus, the updates are given by

η̄[t+ 1] = arg min
η̄

K∑
k=1

L(k)
(
Y (k), pη̄(k)

)
+
ρ

2

K∑
k=1

p∑
j=1

∣∣∣∣∣∣η̄(k) − ā(k)
∣∣∣∣∣∣2

2

η
(k)
j [t+ 1] = a

(k)
j + η̄(k)[t+ 1]− ā(k),

m
(k)
j [t+ 1] = m̄(k)[t] + ρ

(
η̄(k)[t+ 1]− 1

p
X(k) β(k)[t+ 1]

)

A.3. Sharing ADMM using Linear Predictors

Inspection of the scheme presented in Appendix A.2 indicates that we optimize mostly
w.r.t. the linear predictors η(k) ∈ Rnk , k ∈ [K]. This observation suggests to consider the
following augmented problem:

minimize
β,l

K∑
k=1

L(k)
(
Y (k), η(k)

)
+ λPq,α (β)

subject to η(k) −X(k) β(k) = 0, k ∈ [K].
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The corresponding augmented (scaled) Lagrangian is given by

L (β, η, z) =

K∑
k=1

L(k)
(
Y (k), η(k)

)
+ λP (β) +

ρ

2

K∑
k=1

∣∣∣∣∣∣η(k) −X(k) β(k) +z(k)
∣∣∣∣∣∣2

2

The updates are then given by

β[t+ 1] = arg min
β

ρ

2

K∑
k=1

∣∣∣∣∣∣X(k) β(k)−
(
η(k)[t] + z(k)[t]

)∣∣∣∣∣∣2
2

+ λPq,α (β)

η[t+ 1] = arg min
η

K∑
k=1

L(k)
(
Y (k), η(k)

)
+
ρ

2

K∑
k=1

∣∣∣∣∣∣η(k) −
(
X(k) β(k)[t+ 1]− z(k)[t]

)∣∣∣∣∣∣2
2

z(k)[t+ 1] = z(k)[t] +
(
η(k)[t+ 1]−X(k) β(k)[t+ 1]

)
The β update is a simple P-regularized least squares problem with working responses

η(k)[t] + z(k)[t]; the η update is a proximal operator on L. Since L is assumed to be
smooth, this also corresponds to a Ridge-regularized problem. Note that if L is separable
in k ∈ [K] this optimization problem can be split into K ridge problems efficiently.

Let’s define the primal residuals r(k) = η(k)−X(k) β(k) ∈ Rnk , k ∈ [K]. Then, the z(k)

updates take the form

z(k)[t+ 1] = z(k)[t] + r(k)[t+ 1],

and therefore corresponds to a running sum of residuals between η(k) and the linear
predictors X(k) β(k). The dual residuals are given by

s(k) = −X(k)>
(
m(k)[t]−m(k)[t+ 1]

)
= ρX(k)> r(k) ∈ Rp, k ∈ [K].

A stopping criteria (Boyd et al., 2011, Section 3.3) can be defined through∣∣∣∣∣∣r(k)
∣∣∣∣∣∣

2
6 εprimal,

∣∣∣∣∣∣s(k)
∣∣∣∣∣∣

2
6 εdual,

where, using some abuse of notation,

εprimal =
√
n εabs + εrel [||Xβ||2 ∨ ||η||2]

εdual =
√
Kpεabs + εrel ρ

∣∣∣∣∣∣X> z∣∣∣∣∣∣
2
,

for some fixed εabs > 0 given by the problem context and εrel typically of the order of
10−3 or 10−4.
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A.4. Sharing ADMM using Residuals

For a special case of the scheme in Appendix A.3 (Xiao, Wu and He, 2012), we need to

assume that the loss function only depends on the residuals r(k) := X(k) β(k)−Y (k), that
is,

L(k)
(
Y (k),X(k) β(k)

)
= L(k)

(
X(k) β(k)−Y (k)

)
= L(k)

(
r(k)

)
.

Then, we can consider the following augmented problem:

minimize
β,r

K∑
k=1

L(k)
(
r(k)

)
+ λP (β)

subject to r(k) −
(
X(k) β(k)−Y (k)

)
= 0, k ∈ [K].

The corresponding augmented (scaled) Lagrangian is given by

L (β, r,m) =

K∑
k=1

L(k)
(
r(k)

)
+ λPq,α (β) + ρ

K∑
k=1

〈
m(k), r(k) −

(
X(k) β(k)−Y (k)

)〉
+

ρ

2

K∑
k=1

〈
r(k) −

(
X(k) β(k)−Y (k)

)
, r(k) −

(
X(k) β(k)−Y (k)

)〉
,

where m(k) ∈ Rnk , k ∈ [K], is a Lagrange multiplier and ρ > 0 is the ADMM parameter.
The updates are given by

β[t+ 1] = arg min
β

L (β, r[t],m[t]) ,

r[t+ 1] = arg min
r

L (β[t+ 1], r,m[t]) ,

m(k)[t+ 1] = m(k)[t] +
[
r(k)[t+ 1]−

(
X(k) β(k)[t+ 1]− Y (k)

)]
We find

β[t+ 1] = arg min
β

λP (β) +
ρ

2

K∑
k=1

∣∣∣∣∣∣X(k) β(k)−
(
r(k)[t] + Y (k) +m(k)[t]

)∣∣∣∣∣∣2
2
,

which is one big sparse group Lasso problem. For the second update, we get

r[t+ 1] = arg min
r

K∑
k=1

L(k)
(
r(k)

)
+
ρ

2

K∑
k=1

∣∣∣∣∣∣r(k) −
(
X(k) β(k)[t+ 1]− Y (k) −m(k)[t]

)∣∣∣∣∣∣2
2
,

which has the form of a simple Ridge regression problem.
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A.5. Inexact ADMM

Eckstein and Bertsekas (1992, Theorem 8) show that we don’t need to solve each sub-
problem exactly, only that we need to solve them with a certain threshold and that the
threshold should satisfy some decay bounds. For the purpose of self-contained, we include
their theorem as followed:

Consider the minimization of f(x) + g(Mx) where M has full column rank. The
augmented Lagrangian

L (x,w, p) = f(x) + g(w) + 〈p,Mx− w〉+
1

2
ρ||Mx− w||22.

The updates are given by

x[t+ 1] = arg min
x

f(x) + 〈p[t],Mx〉+
1

2
ρ||Mx− w[t]||22

w[t+ 1] = arg min
w

g(w)− 〈p[t], w〉+
1

2
ρ||Mx[t+ 1]− w||22

p[t+ 1] = p[t] + ρ [Mx[t+ 1]− w[t+ 1]]

Then, Eckstein and Bertsekas (1992, Theorem 8) implies we get convergence provided
that ∣∣∣∣∣∣∣∣x[t+ 1]− arg min

x
L (x,w[t], p[t])

∣∣∣∣∣∣∣∣
2

6 µt∣∣∣∣∣∣∣∣w[t+ 1]− arg min
w

L (x[t+ 1], w, p[t])

∣∣∣∣∣∣∣∣
2

6 νt

with µt, νt > 0,
∑
µt,
∑
νt <∞ and where ρ > 0.

A.6. KKT Conditions and Solution Path

For the sparse group Lasso penalty, the sub-gradient equations are given by

0p×K ∈
K∑
k=1

∇L(k)
(
Y (k),X(k) β(k)

)
+ λ∂ Pq,α (β)

For Pq,α(βj) = ωj [α
∣∣∣∣βj∣∣∣∣1 + (1− α)

∣∣∣∣βj∣∣∣∣q], we find

∂ Pq,α
(
βj
)

= ωj

[
α∂
∣∣∣∣βj∣∣∣∣1 + (1− α)∂

∣∣∣∣βj∣∣∣∣q] ,
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where + denotes set addition and where

[∂||u||1]
(k)

=


[−1, 1], u(k) = 0,

{1}, u(k) > 0,

{−1}, u(k) < 0,

k ∈ [K];

∂||u||q =

{
{g | ||g||q∗ 6 1}, u = 0K ,

{u/||u||q∗}, u 6= 0K ,
, 1 < q <∞, q∗ =

q

q − 1
;

∂||u||∞ = conv
{
w | ||w||1 6 1,u>w = ||u||∞

}
.

To find the smallest λ such that all features are excluded, we use these KKT conditions.
If β = 0p×K , we find

K∑
k=1

∇L
(
Y (k),0n(k)

)
∈ λ∂ Pq,α (0p×K) .

Thus, the equation in βj corresponds to

1

ωjλ

K∑
k=1

∇j L
(
Y (k),0n(k)

)
∈ α∂||0K ||1 + (1− α)∂||0K ||q,

that is, there exists u ∈ ∂||0K ||1 and v ∈ ∂||0K ||q such that

1

ωjλ

K∑
k=1

∇j L
(
Y (k),0n(k)

)
= αu + (1− α)v.

For any 1 6 q 6∞, we must have ||u||∞ 6 1 and ||v||q∗ 6 1. Denote

a
(k)
j = ∇(k)

j L
(
Y (k),0n(k)

)
,

so we need to solve 1
λaj = αuj +(1−α)vj where ||uj ||∞ 6 1 and ||vj ||q∗ 6 1. By Hölder’s

inequality, we have ||vj ||q∗ 6 K
1
q∗−

1
∞ ||vj ||∞. Then, we find the bound

1

λ
||aj ||q∗ = ||αuj + (1− α)vj ||q∗

6 α||uj ||q∗ + (1− α)||vj ||q∗
6 αK1/q∗ ||uj ||∞ + (1− α)||vj ||q∗
6 αK1/q∗ + (1− α).

This allows us to have a heuristic starting value,

λmax =
maxj∈[p]

1
ωj

∣∣∣∣∣∣∑K
k=1∇j L

(
Y (k),0n(k)

)∣∣∣∣∣∣
q∗

αK1/q∗ + (1− α)
.
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While this may not be the smallest such lambda, it will be reasonably close to the true
value at the cost of possibly performing a few regularization iterations for nothing at
first. Note that with q = 1, we recover the exact bound since q∗ =∞ implies K1/q∗ = 1.
If α = 0 then we find the group Lasso regularization which has an exact bound

λmax = max
j∈[p]

1

ωj

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

∇j L
(
Y (k),0n(k)

)∣∣∣∣∣
∣∣∣∣∣
q∗

,

which agrees with the above bound.

Appendix B: Solving the Subproblems

B.1. Regularized Least Squares

We consider the following problem:

minimize
β

ρ

2

K∑
k=1

∣∣∣∣∣∣X(k) β(k)−V (k)
∣∣∣∣∣∣2

2
+ λP (β)

for some vector V (k) ∈ Rnk , where λ > 0, ρ > 0. We recognize the previous problem to
be of the form smooth convex function of β + convex function of β which can be solve
using proximal gradient descent. Let

Q(β) :=
ρ

2

K∑
k=1

∣∣∣∣∣∣X(k) β(k)−V (k)
∣∣∣∣∣∣2

2
,

with

∇β(k)Q(β(k)) = ρX(k)>
(
X(k) β(k)−V (k)

)
.

The proximal gradient descent updates are given by

β[t+ 1] = proxη[t]λPq,α (β[t]− η[t]∇Q(β[t])) ,

where η[t] > 0 is a step-size. By the separability of Pq,α across j ∈ [p], these updates can
be performed independently:

βj [t+ 1] = proxη[t]λPq,α
(
βj [t]− η[t]∇jQ(βj [t])

)
,

Note that we have a constant Hessian:

∇2
β(k),β(k)Q(β(k)) = ρX(k)>X(k),

∇2Q(β) = ρ diag
(
X(k)>X(k), k ∈ [K]

)
so we may use this information to find η[t]. Indeed, we can find an upper bound that will
remain constant throughout the ADMM so we can fix the stepsize.
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B.2. Ridge Regularization

In a unified form, we identify the following problem:

minimize
x∈Rd

F (x) := f(x) +
1

2τ
||x− v||22,

which implies that the optimal solution is given by proxτf (v). When f is assumed to
be sufficiently smooth, we can compute its proximal operator using a first-order method.
The quadratic penalty term will then help convergence.

The gradient of the objective function is given by

∇F (x) = ∇f(x) +
1

τ
(x− v) ,

and its Hessian by

∇2F (x) = ∇2f(x) +
1

τ
Id.

Thus, if we have an hessian upper bound ∇2f � LIp, we find ∇2F � (L+ τ−1)Ip which
can be used to construct a fixed step-size algorithm.
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