
STATS 507 Project Report:

MovieLens Datasets—Predicting and

Analyzing User Ratings of Movies
TRONG DAT DO 1,* and SIMON FONTAINE 1,**

1University of Michigan, Department of Statistics. West Hall, 1085 South University, Ann
Arbor, MI, U.S.A., 48109. E-mail: *dodat@umich.edu; **simfont@umich.edu

Summary. The MovieLens datasets contain user ratings of movies as well as movie and user
information. In this report, we consider four predictive models of the ratings based on the
available information: K-nearest-neighbors, neural networks, matrix completion using singular
value decomposition and restricted Bolztmann machine. We tune all models to finally compare
them on their out-of-sample performance: matrix completion produces the best testing metrics.
Then, we propose two exploratory analysis methods in order to extract insight from the selected
predictive model. All code and results can be found at https://github.com/fontaine618/

507-Project/.

1

http://isi.cbs.nl/bernoulli/
mailto:dodat@umich.edu
mailto:simfont@umich.edu
https://github.com/fontaine618/507-Project/
https://github.com/fontaine618/507-Project/


2 Trong Dat Do and Simon Fontaine

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 The MovieLens Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Merging the Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Data Subsetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Data Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 K-Nearest-Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Restricted Boltzmann Machine . . . . . . . . . . . . . . . . . . . . 9

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 K-Nearest-Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Restricted Bolztmann Machine . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Correlating Predictions with External Information . . . . . . . . . . . . . 14
4.2 Bi-Clustering using SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B Derivations for Restricted Bolztmann Machine . . . . . . . . . . . . . . . . . . 19
C Detailed results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



MovieLens—Predicting and Analyzing Movie Ratings 3

1. Introduction

1.1. The MovieLens Datasets

The MovieLens datasets (Harper and Konstan, 2015) contains user ratings of a variety of
movies continuously collected starting from 1997. In addition to the user-movie-rating
pairings, the datasets contains information about movie genres, word tagging of movies
provided by users and user demographic information.

We will consider the MovieLens 100K Dataset1, which is one of the multiple datasets
provided by GroupLens2. We will be interested in this particular dataset because it
contains additional demographic information about the users in the dataset. To include
tagging information, we also consider the MovieLens Tag Genome Dataset3. Here is a
summary of the contents of the datasets that will be used4:

MovieLens 100K Dataset The dataset was collected from the MovieLens website (movielens.
umn.edu) between September 19th, 1997 through April 22nd, 1998. It has been pre-
processed and cleaned to include only examples where the users have made at least
20 ratings during the collection period and where demographic information are
complete. In the u.data file, there are 100,000 ratings on the scale of 1 to 5, taking
only integer values. It contains the following entries: user id, item id, rating,
timestamp. In the u.item file, there are 1681 movies with the following informa-
tion: movie id, movie title, release date, IMDb URL and 19 columns indicating
movie genre with 0-1 encoding where 1 denotes that the movie is of the correspond-
ing genre. In the u.user file, there are 943 users with the following information:
user id, age, gender, occupation (see u.occupation file for details) and zip

code.
MovieLens Tag Genome Dataset This dataset contains tagging information of 9734 movies

and 1128 tags. In particular, the tag relevance file contains the relevance of all
tags for all movies reported on a continuous scale from 0 to 1, where 1 indicates
strong relevance.

1.2. Research Questions

Prediction Modeling Our first research question is to construct a predictive model
for the user ratings using the available information. In particular, we wish to produce
a model that is able to accurately predict the movie rating (for some movie already in
the dataset) by a given user (also in the dataset). This problem is largely inspired from
the Netflix prize (Bennett et al., 2007) where contestant where asked to come up with
the best predictive model for user ratings. The resulting model could then be part of a

1Available at https://grouplens.org/datasets/movielens/100k/
2Organization website: https://grouplens.org/
3Available at https://grouplens.org/datasets/movielens/tag-genome/
4From the README.txt file attached to the datasets (http://files.grouplens.org/datasets/

movielens/ml-100k-README.txt, http://files.grouplens.org/datasets/tag-genome/README.html)

movielens.umn.edu
movielens.umn.edu
https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/
https://grouplens.org/datasets/movielens/tag-genome/
http://files.grouplens.org/datasets/movielens/ml-100k-README.txt
http://files.grouplens.org/datasets/movielens/ml-100k-README.txt
http://files.grouplens.org/datasets/tag-genome/README.html)
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recommendation system where the predicted rating could be used as input to produce
adequate personalized recommendations.

Exploratory Analysis A secondary research question we are interested in is to analyze
the relationship between the available information and user ratings. For example, we
could look for genres and tags that are related to movies with better ratings. Then, we can
perform more granular analyses using the demographic data: this could allow to extract
correlations between population groups and movie interests. The insights recovered from
such analyses could be relevant for decision-making such as identifying which movies to
produce or which population groups to target with advertisement.

2. Methodology

2.1. Data Pre-processing

The MovieLens 100K Dataset and the MovieLens Tag Genome Dataset have both been
extensively cleaned by GroupLens5. Thus, the main pre-processing we have to perform
is the merging of the different datasets and the creation of the training and testing sets.

2.1.1. Merging the Datasets

First, the three datasets in MovieLens 100K Dataset, corresponding to user data, movie
data and the ratings, have unique IDs which allows us to easily match them. There were
no ratings which we were unable to match to users and/or movies in these datasets.

Second, the MovieLens Tag Genome Dataset also has unique IDs identifying movies,
but they differ from those in the MovieLens 100K Dataset. Hence, we resort to matching
the movie on the movie name. Direct matching of the strings allowed of to match a large
proportion (∼80%) of the movies. There were also some movie that we were able to
match using simple rules. For example, the movie names include the year of publication
which were often mismatched by a year and prevented direct matching. Also, other movie
names included the original name (in a foreign language) in either of the two datasets
which prevented direct matching, but could still be detected. Finally, visual inspection
(mostly by hand) of the remaining unmatched movies allowed to identify a few additional
matches. In total, we were able to match 1558 out of the 1681 in the MovieLens 100K

Dataset. We therefore dropped all ratings of the movies which we could not matched.
Fortunately, only very marginal movies did not make the cut and only 588 ratings out of
100,000 had to be dropped: the resulting dataset therefore is composed of 99,412 ratings
on 1558 movies by 943 users.

5See the two README files for details: http://files.grouplens.org/datasets/movielens/

ml-100k-README.txt and http://files.grouplens.org/datasets/tag-genome/README.html

http://files.grouplens.org/datasets/movielens/ml-100k-README.txt
http://files.grouplens.org/datasets/movielens/ml-100k-README.txt
http://files.grouplens.org/datasets/tag-genome/README.html
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2.1.2. Data Subsetting

Upon joining the different datasets, we further subset the data in order to insure adequate
representation of all included movies. In particular, we identify that some movies have
small frequency (some appearing only once, for example). To fix this problem, we omit
all ratings of movies which appear less than 20 times in the dataset. The final dataset
then contains 94,692 ratings on 935 movies; all 943 users remain in the dataset.

2.1.3. Data Splitting

In order to assess the performance of the various models we consider, we proceed to the
usual training-testing splitting. The training set consists of 75% of the dataset (71,035
ratings) and the testing set of 25% of the data (23,657 ratings). For consistency of results,
the splitting was kept constant throughout the analysis. To insure adequate representa-
tion of all movies in each sets, we proceeded to a stratified sampling of ratings within
movies.

Furthermore, the training set was split into cross-validation sets in order to perform
model tuning and model selection. In particular, the 71,035 ratings were each assigned
to one of 5 folds randomly, yielding training sets of size 56,828 and validations sets of
size 14,207. Again, this splitting was kept constant throughout the analysis.

2.2. Modeling

2.2.1. K-Nearest-Neighbors

The K-nearest-neighbors (K-NN) method is a non-parametric predictive model. Given
a dataset of n examples (xi, yi)

n
i=1, the prediction for a new x is obtained as follows:

find the K indices i1 , . . . , iK ∈ [n] such that the distances d(x,xik) are minimized and
aggregate the responses yi1 , . . . , yiK into the prediction ŷ. To completely determine a
K-NN model, we need to specify the number of neighbors K, the distance function d as
well as the aggregation method.

Distance function. Our feature space consists predominantly of three types of infor-
mation: movie genres (19 dimensions, encoded as 0/1), movie tags (1128 dimensions, in
[0, 1]) and user information (24 dimensions, various). Thus, our feature space has 1171
dimensions.

We consider the Euclidean distance d(x,x′) = ‖x−x′ ‖2 for our distance function,
but we proceed to some transformation and parameterization to control the behavior of
the distance.

First, we standardize the features to get a mean of 0 and a variance of 1 across all
examples. This step is crucial for any K-NN model using a general distance such as the
Euclidean distance since features with different scales will have a lot more weight in the
total distance. For example, all of our features are between 0 and except for the user age
which varies from 7 to 73 and if we do not standardize this features, the K-NN will only
match examples of very similar ages irrespectively of the other features.
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Second, to account for the disproportional dimensions of the three groups of features
as well as the relative importance of these groups, we introduce two parameters in the
distance function. We fix the genre contribution to the distance to 1 and consider two
multiplying factors αtags, αuser > 0, respectively for tags and user information. Then, we
transform the standardized features by scaling the correponding groups of features:

x := (xgenres,xtags,xuser) 7→ x̃ := (xgenres, αtags xtags, αuser xuser)

This rescaling has the effect of inflating or deflating the contribution of a group of features
to the total distance; tuning αtags and αuser can therefore improve the performance of
the model by using a more adequate distance.

The features naturally encode the movie and the user. Indeed, two examples of ratings
on the same movies will have a distance discount as 1147 features will be identical and
do not contribute to the distance at all. Similarly ratings made by the same user will
have a distance discount as 24 features will be identical. Then, for appropriate values of
αtags and αuser, we expect the set neighbors of some x to include ratings made by the
same users as well as ratings on the same movie.

Aggregation. Since our responses—the ratings—take discrete numerical values, we
consider two aggregation methods. First, the regression approach consists of simply av-
eraging the K responses: ŷ = 1

K

∑K
k=1 yik . Second, the classfication approach is to set the

prediction ŷ using a majority vote: ŷ = arg maxy∈[5]
∑K

k=1 1(y = yik). It is worth noting
that the classification approach loses the ordinal property of ratings: if the K neighbors
have ratings equal to (1, 1, 5, 5, 5), then the prediction would be 5 for classification while
regression would predict 3.4.

Implementation details. We implement ourK-NN models using the sklearn.neighbors
module (Pedregosa et al., 2011): the classification predictions are made using KNeighborsClassifier

and the regression predictions are made using KNeighborsRegressor. We use default
settings except, obviously, for the number of neighbors. Our model has four tuning direc-
tions: aggregation method, number of neighbors and the two multiplers αtags, αuser > 0.

2.2.2. Neural Networks

Our second predictive model uses a neural network (NN) approach. As input, we have
the movie id, the movie genre and tags, the user id and information; as output, we have
the rating. To fully define the network architecture, we need to specify how we treat the
ids, the hidden layers structure, the final transformation and the loss function as well
as the weight decay parameter. A graphical representation of the NN can be found in
Figure 2.

Movie and user embeddings. While genre, tags and user details contains some
information about the movie and user, they do not capture the full description of these
two object with respect to the ratings. In particular, without these ids, two movies with
identical features will be treated identically by the network even though one might be
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inherently better than the other (e.g., better ratings). Similarly, two users with identical
features cannot be distinguished even tough they might have different rating habits or
movie preferences. Also, simply encoding the ids in a one-hot fashion does not abstract
the latent features of interest, which are most likely shared between some movies and
some users. Thus, we augment the feature input with movie and user embeddings, which
adds a fixed number of features, learned by the model, to each example.

Hidden layers. Given the augmented features, we include multiple fully-connected
layers with linear nodes (with bias) linked through some activation function. We consider
the ReLU activation function as well as different numbers of layers and of hidden nodes.

Transformation and loss function. As was mentioned in the description of the K-
NN model (Section 2.2.1), our discrete numerical response can be treated in multiple
ways: for this NN approach we consider five such treatments.

First, a simple regression scheme can be employed. In this case, we treat the ratings
as a continuous output. We connect the last hidden layer to the ratings using an identity
link and use the squared error loss as our optimization criterion.

Second and third, we can utilize the fact that our numerical outcome as a fixed,
finite range. Indeed, since ratings take values between 1 and 5, we can force the network
to produce predictions within or close to that range. In practice, this has the effect of
not penalizing as much predictions that are away from the [1, 5] range: such predictions
could be interpreted as that the model is really confident that the prediction should be
at the boundary. To proceed as such we consider to simply clip the predictions to the
range [0, 6], which is commonly known as the ReLU6 transformation. Alternatively, we
consider a fixed sigmoid transformed mapped to the interval (−2, 8) which is fairly linear
for the observed values but contracts predictions far from the true range closer to possible
values. The three transformations are depicted in Figure 1.

Fourth, we can treat our responses as five classes where only one is observed per
example. In that case, we encode the ratings in the one-hot fashion, that is, 4 gets
encoded as (0, 0, 0, 1, 0). Then, the final layer is transformed using the usual softmax
function and the loss function used is the binary cross-entropy. Again, this encoding
loses the ordinal nature of the ratings.

Fifth, we can choose a different encoding for the five classes that will reflect ordering of
ratings. Indeed, we can encode a 4 as (1, 1, 1, 1, 0) and model the responses in the multi-
label classification way. Then, since all encoded responses have this ordinal structure, the
NN will reproduce it in its predictions. In that case, we perform a sigmoid transformation
on the five final nodes before comparing them to the encoded ratings; the loss function
is again the binary cross-entropy.

Implementation details. Our NN models are implemented using the PyTorch module
(Paszke et al., 2017) using stochastic gradient descent. We use a fixed learning rate of
0.01, batch size of 512 and number of epochs of 50; the activation functions are chosen
to be the ReLU function in all cases to reduce the tuning space. For this model, we have
six tuning directions: movie and user embedding sizes, hidden layers number and sizes,
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Figure 1: The three transformations considered at the output node for regression in a
neural network. The dashed horizontal lines represent the boundary of observed ratings.

the final transformation and weight decay parameter value. We also compare whether
including the external information improves on simply using the two embeddings.

2.2.3. Matrix Completion

Building a recommendation system by doing matrix completion is one of collaborative
filtering techniques. This means that we will try to suggest movies to an user by inspecting
the ratings of “similar” users. To be more specific, it is assumed that the taste, or the
ratings, made by users follows some low-rank structure, and use that assumption to make
prediction. The idea of using SVD for movie recommendation is simple but it turns out
to be successful in application. The winner in the Netflix prize competition used SVD as
the main technique in their algorithm (Bennett et al., 2007).

Model description. In this model, we use 2 hyper-parameters, which are the embed-
ding dimension k and the number of iterations I. We set up and train the training data
as follows.

1. Create a pivoted matrix A in which rows are users and columns are movies. The
(i, j)-cell of the matrix is the rating of user i for movie j, and is NA if there is no
information about that in the training set. We also create a masked matrix which
indicate which cell in pivot matrix is NA. After that, we fill the NA cells in A with
0.

2. Repeat I times:

� Fill all the non-masked cell in A with the original visible rating.

� Approximate A by its truncated SVD of rank k.

By iterating two steps above, it allows us to reuse the visible information over and
over, and extract the low rank structure of ratings.
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Figure 2: Neural network architecture.

Implementation details. We use the svds function from scipy.sparse.linalg mod-
ule (Virtanen et al., 2020) to compute truncated SVD of pivoted matrix and repeat the
two steps above to get the reconstruction of users-movies ratings matrix. After that, the
information from the reconstructed matrix is used as predictions. This model has two
turning parameters: the dimension k and number of iterations I.

2.2.4. Restricted Boltzmann Machine

Similar to matrix completion, Restricted Boltzmann Machine (RBM) is also a collabo-
rative filtering method. It assumes ratings of users are affected by some latent binary
variables. We construct a probabilistic model where there is F hidden nodes in total and
a bipartite graph for each user connecting the hidden variables with the visible ratings.

Model description. Denote hidden variables by h = (h1, h2, . . . , hF ) and suppose
there are K rating scores in total (5 for our data set). For now, to reduce the burden of
notation, we only consider the model for each user and will talk about the connection
between them later. For a given user, suppose m movies were rated and write the visible
ratings V = (vki )i,k where vki = 1 if movie m was rated k and 0 otherwise. The generative
model is defined by

p(V,h) =
1

Z
exp(−E(V,h)), (2.1)

where Z =
∑

V′,h′ is the normalization. The term E(V, h) is so called energy and defined
by

E(V, h) = −
m∑
i=1

F∑
j=1

K∑
k=1

W k
ijhjv

k
i −

m∑
i=1

K∑
k=1

bki v
k
i −

F∑
j=1

hjbj , (2.2)
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Figure 3: Restricted Boltzmann Machine in Section 2.2.4. Each user has a graphical
model connecting hidden variables and visible ratings. Weights W k

ij are shared among
users.

where W k
ij is the weight connecting hj to vki , bki is a bias term for vki and bj is the bias

for hj . Therefore, each user has a different bipartite graph model and visible ratings V,
but they all share the same weight (W k

ij) and biases (bki ), (bj).
From this, we can calculate the conditional probability

p(vki = 1|h) =
exp(bki +

∑F
j=1 hjW

k
ij)∑k

l=1 exp(bli +
∑F

j=1 hjW
l
ij)
, (2.3)

and

p(hj = 1|V) = σ(bj +

m∑
i=1

K∑
k=1

vkiW
k
ij), (2.4)

where σ is the sigmoid function. The marginal distribution for V is

p(V) =
1

Z

∑
h’

exp(−E(V,h’)).

Our aim is to find (W k
ij , b

k
i , bj)i,j,k maximizing the marginal distribution for visible rat-

ings V, which corresponds to the maximum likelihood method. We will employ gradient
descent to find the optimal weights.

Implementation details. We build and train a RBM model by ourselves using basic
modules such as numpy (van der Walt, Colbert and Varoquaux, 2011). There are three
turning parameters in the model: the number of hidden nodes, the number of Gibbs
samplings in Contrastive Divergence, and the learning rate. Many details in the imple-
mentation is taken from Hinton (2012).
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3. Results

We perform 5-fold cross-validation on many instances of our models against the training
set and produce the mean squared error (MSE) and prediction accuracy averaged over
the 5 folds. For models with numerical predictions, we assign the predicted rating to the
nearest integer in the range [1, 5]. Models with class predictions simply use the class label
as their numerical prediction.

It is worthwhile to mention that we are in a classification problem with 5 classes so
a random assignment would produce 20% accuracy: we observe accuracies close to 40%,
which is already a great improvement. To get a sense of “good” MSE values, we report
that the winners of the Netflix prize (Bennett et al., 2007) have a test score of 0.8567 on
a similarly structured dataset.

We first detail the results for the four models we consider, noting some observation on
their CV performance. Then, we proceed to a comparison of the four models in terms of
CV and testing.

3.1. K-Nearest-Neighbors

Upon training and testing 35 instances of the K-NN model described in Section 2.2.1
with varying tuning parameters, we obtain the results depicted in Table 2 which contains
a selection of the best models.

As could be expected, regression aggregation performs better in terms of MSE while
classification aggregation performs better in terms of prediction accuracy. Also, the value
of the tuning parameters αuser and αtags for these best models seems to align with their
purpose. Indeed, we observe that the best models require to inflate the importance of
user information and deflate that of tags.

The K-NN models is particularly inefficient computationally: when K increases from
5 to 100, training time increases from minutes to hours.

3.2. Neural Network

We trained hundreds of instances of the NN approach described in Section 2.2.2; the
results for a selection of the best models can be found in Table 5. We make some obser-
vations with regards to the tuning parameters.

First, we observe that including the external features (genre, tags, user info) greatly
improves the model as we see a significant reduction in MSE prediction accuracy.

Second, we note that the ordinal transformation does not appear in the best results:
inspecting the complete logs, we find that this method performs better than classifica-
tion in terms of MSE but worse in terms of prediction and is therefore in the middle
of the pack in both categories. The classification scheme yields decent prediction perfor-
mance, but we see even better accuracy from regression approaches. The three regression
transformation—identity, ReLU6 and sigmoid—seem to perform rather similarly with
the sigmoid transform being slightly worse generally.
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Third, the best performing models in terms of CV metrics seem to require simpler
hidden layers structures: while the experiments included networks with up to four hid-
den layers, the best models generally contain only two. This exhibits the benefit of using
CV for model selection as it prevents overfitting. Similarly, the best models generally
require some regularization—through weight decay—in order to exhibit good generaliza-
tion metrics.

In terms of computing time, the NN models we consider train for 50 epochs in around
1 minute on GPU.

3.3. Matrix Completion

We trained around 100 instances of matrix completion models described in Section 2.2.3.
We choose to present some models with its parameters. From the result, in Table 3, we
can see some facts about turning parameters as below.

For the embedded dimension k, if it is chosen to be too small, the model will not
capture enough the complexity of the data and lead to the underfitting phenomena. If k
is large, the computational time will relatively increase but the prediction is not getting
better, and there is even the overfitting phenomena.

For the iterative number I to use SVD, it can be seen that small I leads to underfitting
model meanwhile large I leads to overfitting model. This can be interpreted that if we
reuse the training data too many times, the model will tend to prefer the training data
and the test error will eventually increase. If k and I are large at the same time, the
model will be surely overfitting.

It is amazing that this model only needs a few lines of code but the performance is
comparable to what the complicated models like Neural network or Restricted Boltzmann
Machine do. The idea behind this method is also innocent and it is computationally
efficient (most of them only take less than a second to train in a 4 cores CPU machine).

3.4. Restricted Bolztmann Machine

We trained around 100 instances of RBM model as describes in Section 2.2.4. We choose
to present some models with its parameters. From the result, in Table 4, we can see some
facts about turning parameters as below.

For the number of hidden nodes, it turns out to be the best when set it around 15-20.
If this number is too small, the model will be underfitting, but setting this number to
large does not help the model to predict better.

For the number of Gibbs samplings to use in Contrastive Divergence, it is plausible
to set it 1, because it does not help to improve the model significantly when it increases,
but slow down the learning phase much (we need to do sampling for every (movie, user)
couple.)

It is claimed in Salakhutdinov, Mnih and Hinton (2007) that RBM paper can outper-
form SVD models in a fine-tuned parameters scenario. However, we observe something
contrary to that here. It may due to the fact that the research team at the University
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CV Test

Model MSE Acc. MSE Acc.

K-Nearest-Neighbors 0.9898 0.3741 0.9737 0.3767
Neural Network 0.9402 0.3985 0.9016 0.4165
Matrix completion 0.9533 0.4116 0.8810 0.4333
Restricted Boltzmann Machine 1.0362 0.3609 1.0308 0.3682

Table 1. Cross-validation and testing metrics on the best version of the four models, respectively in
terms of regression and classification, trained on the MovieLens dataset.

of Toronto spent several years to achieve the expertise in training RBM models. In the
time to the final report, we will keep trying improve our RBM model and see how far
can we go compared to what is presented in that paper.

3.5. Model Comparison

Table 1 contains a comparison of the best version of each of the four models we considered.
The K-NN models perform worse than NN and matrix completion and require much

more computing time. This approach does not seem very promising as a predictive model
for movie ratings.

The NN models yield interesting results and can be trained efficiently. They achieve
lower CV MSE than matrix completion, but their generalization to the testing set is
worse. It is worthwhile to note that they do not achieve the performance level of ma-
trix completion even though more information is included in the model. Indeed, matrix
completion does not use movie genre and tags nor user information.

The SVD matrix completion model results show that this simple model can outper-
form many other complicated models. Simon Funk, a participant in the Netflix prize
competition (Bennett et al., 2007), used this simple model and finished in third place.6

Its computational efficiency, compared to all three other models, is also a very appealing
feature.

The RBM model, while a beautiful latent variable model, really needs time and ex-
pertise to be able to set it up correctly and implemenent efficiently.

Overall, matrix completion using SVD out-performs all other models in MSE and
classification accuracy on the testing set. Therefore, we choose that approach for the
subsequent analyses.

4. Exploratory Analysis

In order to extract insight out of our predictive model, we propose to ways to explore the
relationship between the extra information—movie genres and tags, user demographics—
and the predicted ratings. Ultimately, what our model tells us about the predicted ratings

6https://sifter.org/~simon/journal/20061211.html

https://sifter.org/~simon/journal/20061211.html
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can be translated into knowledge about the population of movies and the population of
users. The proposed methods serve mostly as proofs of concept or blueprints more than
actual analyses: we are mostly interested on how we can retrieve information from the
model rather than the actual information itself.

4.1. Correlating Predictions with External Information

Our first approach relies only on the predictive nature of our model and thus do not
depend on the actual type of model selected. As a first step, we make every user rate
every movie in order to remove the sampling bias introduced by the users choosing which
movie to watch (and then rate them). The matrix completion model provide us with
that for free as the low-rank approximation contains exactly those prediction. Second,
we standardize the predictions by subtracting the mean predicted rating of each user
from all its predictions: this has the effect of removing the effect of users having different
scales. Indeed, a rating of 4 might not mean the same thing for each user and we need
to account for that. Then, we treat the predicted rating differences as “observed” and
study how they vary with respect to both populations. For categorical features, we can
average predicted rating differences within each subgroups. For numerical features, we
can study the variation using a fitted smooth curve.

As an example, we consider the variation of predicted rating differences with respect
to movie genres, user gender and user age. Since both genres and gender are categorical
variables, we simply subset the predictions according to all combinations of those features.
Then, within each subset, we fit a generalized additive model (GAM)7 between the
predicted rating differences and age. The results can be found in Figure 4.

If we consider Documentary movies, we can see that younger males and older females
tend to rate such movies better than their average while younger females and older males
tends to rate them around their average. Thriller and Sci-Fi movies seems to be under-
appreciated by the whole user population while Drama movies seems to be generally
well-received by all users.

4.2. Bi-Clustering using SVD

Our second approach relies on the output of the matrix completion ratings model. The
singular value decomposition resulting from the matrix completion produces left- and
right- singular vectors within U and V , respectively. The matrix U ∈ Rnmovies×4 then con-
tains then contains a 4-dimensional embedding of each movie; the matrix V ∈ R4×nusers

contains a 4-dimensional embedding of the users. Studying these embeddings with re-
spect to external information can infrom us on the relationship between the population
of movies and of movies through ratings.

Figures 5a and 5b contain scatter plots of these embeddings. Visual inspection

7Fitted using the pyGAM package (Servén and Brummitt, 2018).



MovieLens—Predicting and Analyzing Movie Ratings 15

0.25

0.00

0.25

R
at

in
g 

di
ffe

re
nc

e

Action Adventure Animation

0.25

0.00

0.25

R
at

in
g 

di
ffe

re
nc

e

Children's Comedy Crime

0.25

0.00

0.25

R
at

in
g 

di
ffe

re
nc

e

Documentary Drama Fantasy

0.25

0.00

0.25

R
at

in
g 

di
ffe

re
nc

e

Film-Noir Horror Musical

0.25

0.00

0.25

R
at

in
g 

di
ffe

re
nc

e

Mystery Romance Sci-Fi

20 40 60
Age

0.25

0.00

0.25

R
at

in
g 

di
ffe

re
nc

e

Thriller

20 40 60
Age

War

20 40 60
Age

Western

Gender
Female
Male

Movie genre rating difference per user age and gender

Figure 4: Variation of predicted rating differences with repect to movie genre, user gender
and user age. For each subset given by a genre-gender combination, a GAM is fitted
against user age. Solid lines represent the fitted mean; dashed lines corresponds to 95%
confidence intervals around the fitted mean.



16 Trong Dat Do and Simon Fontaine

0.0

0.1

0

0.05

0.00

0.05

1

0.05

0.00

0.05

2

0.
0

0.
1

0

0.02

0.04

3

0.
05

0.
00

0.
05

1

0.
05

0.
00

0.
05

2

0.
02

5

0.
05

0

3

Movie embedding and clusters

(a) ted mean.

-0.1

0.00

0.1

0.0

0.1

1

0.00

0.05

2

0.
1

0.
0

0

0.02

0.04

3

0.
1

0.
0

0.
1

1

0.
00

0.
05

2

0.
02

5

0.
05

0

3

User embedding and clusters

(b) d mean.

Figure 5: Caption place holder

5. Conclusion



MovieLens—Predicting and Analyzing Movie Ratings 17

1 2 3 4
Movie cluster

1

2

3
U

se
r c

lu
st

er

Ratings for user-movie cluster combinations

1.5

2.0

2.5

3.0

Figure 6: d mean.

A
ct

io
n

A
dv

en
tu

re

A
ni

m
at

io
n

C
hi

ld
re

n'
s

C
om

ed
y

C
rim

e

D
oc

um
en

ta
ry

D
ra

m
a

Fa
nt

as
y

Fi
lm

-N
oi

r

H
or

ro
r

M
us

ic
al

M
ys

te
ry

R
om

an
ce

S
ci

-F
i

Th
ril

le
r

W
ar

W
es

te
rn al

l

1

2

3

4

Cluster frequency per movie genre

0

10

20

30

40

Figure 7: ted mean.

ad
m

in
is

tra
to

r

ar
tis

t

do
ct

or

ed
uc

at
or

en
gi

ne
er

en
te

rta
in

m
en

t

ex
ec

ut
iv

e

he
al

th
ca

re

ho
m

em
ak

er

la
w

ye
r

lib
ra

ria
n

m
ar

ke
tin

g

no
ne

ot
he

r

pr
og

ra
m

m
er

re
tir

ed

sa
le

sm
an

sc
ie

nt
is

t

st
ud

en
t

te
ch

ni
ci

an

w
rit

er al
l

1

2

3

Cluster frequency per user occupation

0

20

40

60

Figure 8: d mean.



18 Trong Dat Do and Simon Fontaine

References

Bennett, J., Lanning, S. et al. (2007). The netflix prize. In Proceedings of KDD cup
and workshop 2007 35. Citeseer.

Harper, F. M. and Konstan, J. A. (2015). The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems 5 1–19.

Hinton, G. E. (2012). A practical guide to training restricted Boltzmann machines. In
Neural networks: Tricks of the trade 599–619. Springer.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L. and Lerer, A. (2017). Automatic differentiation in
PyTorch.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vander-
plas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duches-
nay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learn-
ing Research 12 2825–2830.

Salakhutdinov, R., Mnih, A. and Hinton, G. (2007). Restricted Boltzmann Ma-
chines for Collaborative Filtering. In Proceedings of the 24th International Conference
on Machine Learning. ICML ’07 791–798. Association for Computing Machinery, New
York, NY, USA.

Servén, D. and Brummitt, C. (2018). pyGAM: Generalized Additive Models in
Python.

van der Walt, S., Colbert, S. C. and Varoquaux, G. (2011). The NumPy Array:
A Structure for Efficient Numerical Computation. Computing in Science Engineering
13 22-30.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cour-
napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat, İ.,
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Appendix A: Contributions

The work was subdivided as follows. Simon worked on K-NN and NN models, Dat
on matrix completion and RBM models. Each implemented, trained and analyzed the
respective models; the respective part of the report were written accordingly. The ex-
ploratory data analysis was performed jointly: Simon wrote the first method and Dat
wrote the bi-clustering section. The rest of the report was written jointly.

Appendix B: Derivations for Restricted Bolztmann
Machine

Learning. We need to compute the gradient of log p(V) in order to perform gradient
ascent. By the chain rule

∂ log p(V)

∂W k
ij

=
1

p(V)

∂p(V)

∂W k
ij

=
1

p(V)

(∑
h 1[hj=1,vk

i =1]p(V,h)

Z
−
p(V)

∑
ν,h 1[hj=1,νk

i =1]p(ν,h)

Z

)
= Eh|V(vki hj)− E(νki hj)

=:
〈
vki hj

〉
data
−
〈
νki hj

〉
model

where 〈·〉subscript denotes the conditional expectation with respect to the subscript. Sim-
ilarly, we have

∂p(V)

∂bj
= Eh|V(hj)− E(hj) = 〈hj〉data − 〈hj〉model , (B.1)

and
∂p(V)

∂bki
= vki − E(νki ) = vki −

〈
νki
〉
model

. (B.2)

In each equation, it is customary to call the first term positive statistics and second term
negative statistics. Hence, we have the analytical representation of gradient of weights and
biased terms. In every equation, the first term is easy to compute thanks to (2.4). How-
ever, computing the terms

〈
νki
〉
model

, 〈hj〉model, and
〈
νki
〉
model

requires to take the sum
over all value of ν,h, which takes exponential time and makes the algorithm inefficiently.
We will instead use the Contrastive Divergence (CD) method (Hinton, 2012) which con-
sists of approximating

〈
νki hj

〉
model

with
〈
νki hj

〉
recon

, an approximated reconstruction of〈
νki hj

〉
model

based on an idea similar to the Gibbs’ sampler.

Computing gradient using Constrastive Divergence. The idea behind Contrastive
Divergence (Hinton, 2012) is to approximate the gradient using the difference of two
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Kullback-Leibler divergences and ignore one trickly term. Although this is a crude ap-
proximation, it turns out to work really well in many applications. The Constrastive
Divergence with n steps (CDn) can be interpreted as follows. Given the visible ratings
V, first we sample binary value for hidden units hdata = h by equation (2.4). Then we
do n steps of Gibbs’ sampling, each contains two intermediary steps

1. Sample ν ← h based on equation (2.3).
2. Sample h← ν based on equation (2.4).

To derive the positive statistics, we use the value of data V and hdata. Although we can
calculate it analytically using (2.4), using the sample values can reduce the noise when
we take the difference with the negative statistics. Hence, we have〈

vki hj
〉
data
← vki hdata,j , 〈hj〉data ← hdata,j

When collect the negative statistics, it is advised in Hinton (2012) that in the last step,
we should only collect h as the probability p(h|ν) (but not sample from it) to get the
updates 〈

νki hj
〉
recon

← νki hj , 〈hj〉recon ← hdata,j ,
〈
νki
〉
recon

← νki .

Making predictions. Given a set of visible unit V, we can predict the rating for a
new movie by using Bayes’ rule and marginalization of h:

p(vkq = 1|V) ∝ p(vkq = 1,V)

∝
∑
h

p(vkq = 1,V,h)

∝ exp(bqk)

q∏
j=1

∑
hj∈{0,1}

exp(
∑
il

vlihjW
l
ij + hjW

k
qj + hjbj)

= exp(bqk)

q∏
j=1

(
1 + exp(

∑
il

vliW
l
ij +W k

qj + bj)

)
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Appendix C: Detailed results

Tables 2 to 5 contain some of the best models trained for each of the four prediction
methods considered. The complete logs can be found alongside the project’s code at
https://github.com/fontaine618/507-Project/.

α CV Test

Aggregation K User Tags MSE Acc. MSE Acc.

Regressor 50 200 0.5 0.9898 0.3741 0.9737 0.3767
1000 1.0 0.9950 0.3733 0.9780 0.3779
500 0.5 0.9966 0.3725 0.9802 0.3762
200 0.2 1.0129 0.3703 0.9967 0.3742
500 0.2 1.0129 0.3702 0.9967 0.3742

75 200 0.5 1.0145 0.3680 0.9972 0.3714
100 100 1.0 1.0166 0.3690 1.0045 0.3694

Classifier 100 100 1.0 1.2363 0.3900 1.2395 0.3915
50 100 1.0 1.2482 0.3935 1.2547 0.3940

100 1000 1.0 1.2979 0.3885 1.2759 0.3943
100 0.1 1.3521 0.3832 1.3454 0.3832

1000 0.1 1.3533 0.3833 1.3484 0.3831

Table 2. Cross-validation and testing metrics of some of the best K-nearest-neighbors models trained
on the MovieLens dataset.

CV Test

Dimension Nb. iterations MSE Acc. MSE Acc.

4 100 0.9533 0.4116 0.8810 0.4333
5 100 0.9774 0.4103 0.9038 0.4306
4 80 0.9804 0.4081 0.8954 0.4298

70 1.0014 0.4046 0.9075 0.4271
5 80 1.0024 0.4049 0.9206 0.4257

70 1.0220 0.4016 0.9338 0.4236

Table 3. Cross-validation and testing metrics of some of the best matrix completion (SVD) models
trained on the MovieLens dataset.

CV Test

Hidden nodes Gibbs iterations Learning rate MSE Acc. MSE Acc.

15 5 1.0 1.0362 0.3609 1.0308 0.3682
1 1.0 1.0375 0.3607 1.0330 0.3682

20 5 1.0 1.0375 0.3612 1.0320 0.3670
25 5 1.0 1.0394 0.3603 1.0344 0.3669

Table 4. Cross-validation and testing metrics of some of the best restricted Bolztmann machine
models trained on the MovieLens dataset.

https://github.com/fontaine618/507-Project/
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Embeddings CV Test

Transform User Movie Hidden layers Decay MSE Acc. MSE Acc.

With features – Best MSE

RegressorRelu6 128 64 1024, 128, 64 10−6 0.9402 0.3985 0.9016 0.4165
1024, 128 10−6 0.9461 0.3810 0.9516 0.3810

10−4 0.9546 0.3758 0.9489 0.3841
Regressor 128 64 1024, 128 10−5 0.9676 0.3870 0.9869 0.3631
RegressorRelu6 128 64 1024, 128 — 0.9693 0.3729 0.9418 0.3869
Regressor 128 64 1024, 128, 64 10−6 0.9915 0.3874 1.0240 0.3570
RegressorRelu6 128 64 1024, 128, 64 — 0.9944 0.3749 1.1091 0.3330
Regressor 128 64 1024, 128, 64 10−5 1.0155 0.3857 0.9780 0.3711

1024, 128 — 1.0227 0.3645 0.9419 0.3800
RegressorRelu6 128 64 1024, 128 10−5 1.0240 0.3652 0.9440 0.3843

1024, 128, 64 10−4 1.0253 0.3650 0.8911 0.4051
Regressor 128 64 1024, 128 10−6 1.0635 0.3586 0.9343 0.3823

With features – Best Accuracy

RegressorRelu6 128 64 1024, 128, 64 10−6 0.9402 0.3985 0.9016 0.4165
Regressor 128 64 1024, 128, 64 10−6 0.9915 0.3874 1.0240 0.3570

1024, 128 10−5 0.9676 0.3870 0.9869 0.3631
1024, 128, 64 10−5 1.0155 0.3857 0.9780 0.3711

RegressorRelu6 128 64 1024, 128 10−6 0.9461 0.3810 0.9516 0.3810
Classifier 128 64 1024, 128 10−6 1.1216 0.3795 1.1070 0.3918

10−5 1.1219 0.3794 1.1071 0.3914
— 1.1218 0.3794 1.1066 0.3919

10−4 1.1213 0.3793 1.1063 0.3915
RegressorRelu6 128 64 1024, 128 10−4 0.9546 0.3758 0.9489 0.3841

1024, 128, 64 — 0.9944 0.3749 1.1091 0.3330
1024, 128 — 0.9693 0.3729 0.9418 0.3869

Without features – Best MSE

RegressorRelu6 32 128 64, 64 10−4 1.0424 0.3624 1.0445 0.3605
64 128 64, 64 10−4 1.0426 0.3633 1.0457 0.3618
32 128 64, 64 10−5 1.0433 0.3620 1.0462 0.3604

— 1.0435 0.3619 1.0456 0.3611

Without features – Best Accuracy

RegressorRelu6 64 128 64, 64 10−4 1.0426 0.3633 1.0457 0.3618
10−6 1.0440 0.3632 1.0462 0.3610
10−5 1.0435 0.3631 1.0464 0.3605

Table 5. Cross-validation and testing metrics of some of the best neural network models trained on
the MovieLens dataset.
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