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Abstract—We propose a latent variable model for paired
comparisons in the context of Basketball scores. Based on the
model proposed by [1], our model assumes multi-dimensional
latent skills decomposed into offensive and defensive components
as well as team- and conference-specific skills interacting with
each other through an inner product model. We propose two
inference approaches: maximum likelihood estimation (MLE)
and mean-field variational inference (VI). Applied to the 2004-
2017 NCAA Men’s Basketball season’s, the MLE approach
yields adequate and interpretable results, but the VI approach
was not as successful. Based on the MLE inference, we study
the relationship between teams and conferences, we investigate
league-wide trends over time and we produce rankings of teams
and conferences.
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I. INTRODUCTION

The world of sports leads itself to many statistical analysis
tasks: a vast amount of data is collected on various levels—per
team, per match, per player, etc.—and learning from it has
a wide array of application such as for teams to improve
themselves or prepare themselves better against a forthcoming
opponent, for leagues to investigate rule changes, for betters
and oddsmakers to make better bets or to set accurate odds. In
this work, we are interested in evaluating team’s performance
using matchup results. In particular, we analyze NCAA Men’s
Basketball matches to produce a predictive model for score
outcome as well as a ranking of those teams.

The approach we use is a latent variable model where we
assume that each team’s performance is determined by a set
of unobserved quantities. Learning about those latent variables
and how they associate with observed scores then enables
comparing teams that have yet not played against each other
for prediction or ranking purposes. The proposed model is
largely inspired from that in [1], which also considers a latent
variable model for predicting Basketball scores, but introduces
some changes to be discussed.

A main aspect of the model in [1] is the use of offensive and
defensive latent skills. Since Basketball is a possession-based
sport where teams exchange possession of the ball, teams
alternate between offense and defense. Then, the observed
score of a given team depends on how good they are at scoring
points and how well the opposing teams is at preventing points.
A similar decomposition of skills can also be found in Soccer
scores analysis (e.g., [2]).

In the National Collegiate Athletic Association (NCAA),
teams are aggregated by conferences of around 10-12 teams
and, during the course of a season, teams play the majority
of their matches against teams of their own conference. The
model in [1] further consider conference-specific offensive
and defensive skills in order to assess differences in strength
between conferences as well as variation within conferences.

In addition to the offense/defense and team/conference skill
decompositions, [1] consider multi-dimensional skills. Using
multi-dimensional latent space allows the modeling of non-
transitive relationships between teams. Indeed, while stronger
teams generally perform better than weaker teams, there may
be some specific matchups where this is not the case. In



particular, certain teams’ offensive style may be well-suited
against some teams’ defensive style, but not for others. Fig-
ure Figure 1 on page 2 shows a toy example using the famous
rock-paper-scissors game of how multidimensional offensive
and defensive skills allow for non-transitive comparisons. If
closeness of offensive and defensive skills are modeled as
producing higher scores, we can see that paper should score
high against rock while rock should score low against paper,
yielding a paper victory. The same can be said for rock
beating scissors and scissors beating paper. Were skills uni-
dimensional, such relationships would not be possible.

Fig. 1. Non-transitivity in latent spaces. Head of arrows represent offensive
skills, tails, defensive skills. Diagram from [3].

A well-known phenomenon in sports is the “home-field
advantage” where teams playing at home tend to perform
better than playing at a neutral site or at an opponent’s home.
For example, during the 2017 season, teams playing at home
had an overall record of 2930-1573 for a win percentage of
65%, way above an expected 50% under random assignment
of location. It is therefore important to include this large effect
as part of the model to improve its performance.

A. Goals

The main goal of this research is to construct a predictive
model for NCAA Men’s Basketball scores that incorporates
conference effect and home-field advantage and allows non-
transitive comparisons. Starting from the latent variable model
described [1], we propose changes fixing some of shortcom-
ings that will be described further:
• Unintuitive relationship between team and conference

latent skills;
• Unintuitive home-field advantage;
• Independence between the two teams’ scores in a match;
• Weak selection of the latent space dimension;
• Constant skills across seasons.

B. Data Description

We consider season and post-season NCAA Men’s Basket-
ball match results from 2004 to 2017 curated in a Kaggle
dataset [4]. Each season consists of N ≈ 5000 regular season
matches between T ≈ 350 teams split across C ≈ 30
conferences (these values vary between seasons). For each
match, we have access to the scores of both team as well
as where the match was played (at one of the team’s home
or on a neutral site.) The post-season, i.e. the March Madness
tournament, consists of 67 matches between a selection of the

best regular-season teams. The tournament matches thus pro-
vides an interesting testing set as these matches are harder to
predict: this is particularly true given that tournament matches
are played on neutral grounds. For the current analysis, we
omit all matches that went to overtime (≈ 6% each season) as
the exposure is increased and scores lie on a different scale.

C. Organization

In Section II, we describe the model in [1] and discuss
some of its problems, define the model we propose and discuss
the changes made. In Section III, we describe two inference
methods for fitting the proposed model: a maximum likelihood
method where latent variables are treated as fixed and a
variational inference method where they are treated as random.
In Section IV, we briefly discuss the implementation of both
inference methods. In Section V, we present results when our
model and methods is applied to NCAA Men’s Basketball
data. In Section VI, we discuss some limitations and further
improvements to the current research.

II. MODEL DESCRIPTION

A. Original Model of [1]

The authors of [1] propose the following generative model
for the scores. For each team, the offensive and defensive
latent positions are sample from K1 independent Gamma
distribution: for all t ∈ [T ],

T ot,k ∼ Gamma (sot , r
o
t ) , k ∈ [K1],

T dt,k ∼ Gamma
(
sdt , r

d
t

)
, k ∈ [K1],

for some shape and rate hyper-parameters sot , s
d
t , r

o
t , r

d
t . Simi-

larly, conferences’ offensive and defensive latent positions are
sampled from K2 independent Gamma distributions: for all
c ∈ [C],

Coc,k ∼ Gamma (soc , r
o
c) , k ∈ [K2],

Cdc,k ∼ Gamma
(
sdc , r

d
c

)
, k ∈ [K2],

for some shape and rate hyper-parameters soc , s
d
c , r

o
c , r

d
c . The

home coefficient is sampled from a Gamma distribution:

H ∼ Gamma (sH , rH) ,

for some shape and rate hyper-parameters sH , rH . Then for
each match m, we define h (m) and a (m) as the team index
of the home and the away team, respectively, and c (t) as the
conference index of team t. The scores are then modeled by
independent Poisson centered at the sum of inner products of
the offensive skill with the adversary’s defensive skill for both
the team and the conferences. The home-field advantage acts
multiplicatively only on the home team:

Y hm ∼ Poisson
(
H
[
T o>h(m)T

d
a(m) + Co>c(h(m))C

d
c(a(m))

])
,

Y am ∼ Poisson
(
T o>a(m)T

d
h(m) + Co>c(a(m))C

d
c(h(m))

)
.

When the match is played on a neutral site, the factor H is
omitted for both teams.



B. Comments on the Original Model

We raise a few concerns regarding the previously described
generative model which will justify some of the changes we
propose.

First, the team and conference’s latent variable lie in spaces
of different dimensions and are therefore not directly inter-
pretable. In a prediction setting, which is the main goal in [1],
this is not a major concern, but if we wish to further analyses
the learned latent representation, it is desirable that they at
least lie in the same dimensional space. Furthermore, even
if the spaces have the same dimensionality, the model would
not associate the k-th team component to the k-th conference
component.

Second, the contribution of the home-field advantage seems
misguided and this can be seen particularly when comparing
neutral-site matches to non-neutral site matches. Indeed, the
effect is included only for teams playing at home. It seems
preferable to include the inverse effect for team playing away
so the overall effect agrees with the neutral case where no
home-field advantage/disadvantage is added.

Third, basketball being a possession- and pace-based sport,
we expect the two scores in a match to be correlated with each
other, even given the team and conferences skills. In particular,
a match with more possessions will induce higher scores for
both team. This model does not allow such correlation and
assumes that the latent skills will capture the propensity of
matches to be low- or high-scoring.

Fourth, it is not clear that a Poisson model for the score is a
reasonable assumption. While scores are non-negative integers,
the variance restriction might not agree with observations. The
Poisson assumption is partly influenced by a similar modeling
strategy for Soccer scores (see, e.g., [2]). It is important to
note that Soccer scores typically range between 0 and 5 so a
integer-valued distribution is crucial in this case. The choice
of Poisson model is also justified by conjugacy with priors
as well as with taking inner products: the inference scheme
therefore consists of analytical updates.

C. Proposed Model

The model we propose (Figure 2) will take a similar form
except for a few changes addressing the various issues. We
consider standard normal priors for teams’ and conferences’
offensive and defensive skills, but now choosing K1 = K2 =
K:

T ot,k ∼ N (0, 1) , k ∈ [K], t ∈ [T ],

T dt,k ∼ N (0, 1) , k ∈ [K], t ∈ [T ],

Coc,k ∼ N (0, 1) , k ∈ [K], c ∈ [C],

Cdc,k ∼ N (0, 1) , k ∈ [K], c ∈ [C].

To insure that both latent space have the same interpretation,
we combine team-specific and conference-specific linearly by
introducing a parameter λ ∈ R controlling the relative weight
of conferences:

Sot = T 0
t + λCoc(t), Sdt = T dt + λCdc(t), t ∈ [T ].

Then, for each match m, we define team i’s propensity
to produce points as the inner product between that team’s
offensive skill and their adversary’s defensive skill. For ti (m)
defined as team’s i index in match m, i = 0, 1, we define

Mm,i = So>ti(m)S
d
t1−i(m), i = 0, 1.

Next, we include the home-field advantage additively:

M̃m,i = Mm,i +Hhi (m) , i = 0, 1,

where

hi (m) =


+1 team i is playing at home in match m,
0 match m is played at a neutral site,
−1 team i is playing away in match m.

Finally, we write M̃m =
(
M̃m,0M̃m,1

)>
and model the scores

using a bivariate normal distribution:

Ym | M̃m ∼ N2

(
µ12 + cM̃m,Σ

)
,

where µ ∈ R centers the scores, c ∈ R scales the skills and
Σ ∈ R2×2 is a symmetric positive definite matrix controlling
the variance of the scores as well as the correlation between
them. Additionally, we impose Σ to have following structure:

Σ = σ2

[
1 ρ
ρ 1

]
,

where σ2 > 0 and ρ ∈ (−1, 1) are model parameters.

Fig. 2. Proposed model. White nodes are hidden variables; grey nodes are
observed; black nodes are model parameters. [3]



D. Comments on the Proposed Model

The scaling parameter λ, together with the fixed scale of
the latent variables, allows further estimation of how much a
team’s skill is determined, or captured, by the strength of their
conference. For small values of λ, then most of the variation
between team is team-specific; for large values of λ, most of
the variation between team is captured by their conference.

The inner product factor, in conjunction with the Gaussian
prior and Gaussian likelihood, breaks the conjugacy of the
model and prevents utilizing analytical updates. In Section III,
we will propose two inference methods to deal with this non-
conjugacy.

To insure that our model in exchangeable within each match,
i.e., that the team assignment to position 0 or 1 does not
influence inference, we have to impose some structure on the
Gaussian likelihood factor. To this effect, we impose scores
to be centered at a symmetric mean µ12 and the covariance
matrix Σ to be homogeneous.

The full effect of the home-field advantage on the outcome
of a match can be understood as a difference of 2mH points
between the home team and the away team.

In comparison with the Poisson model, we assume a fixed
but estimable mean-variance relationship given M̃m. Indeed,
for any such M̃m we use the same covariance matrix which
assumes that low-scoring games have the same variation in
scores than higher-scoring games. While this may be an
assumption not supported by data, it allows to estimate both
the variance—which could be different from that in a Poisson
model—as well as the covariance—which cannot be easily
modeled in a Poisson model.

We treat θ =
(
λ,H, c, µ, σ2, ρ

)
as model parameters and

therefore do not set prior distribution onto them. This assump-
tion simplifies calculations and is justified by the fact that they
are estimated from a large amount of observations so their
respective posterior distribution would concentrate greatly.

III. INFERENCE

The likelihood part of the generating model consists only
of the Gaussian likelihood; indeed, conditionally on the latent
variables, all other hidden variables are deterministic functions
of one another. Let ϕp (· | µ,Σ) denote the density of a
p-variate Gaussian with mean µ and variance Σ and let
Z =

(
T o, T d, CoCd

)
denote all latent variables. Then, the

likelihood is given by

p (Y | θ, Z) =

M∏
m=1

ϕ2 (Ym | µm,Σ) ,

where µm = µ12 + cM̃m. The log-likelihood is then

` (θ, Z | Y ) = −M
2

log det (2πΣ)

− 1

2

M∑
m=1

[Ym − µm]
>

Σ−1 [Ym − µm] . (1)

The prior term is given by

π (Z) =
∏

x∈{o,d}

[
T∏
t=1

ϕ (T xt )

C∏
c=1

ϕ (Cxc )

]

A. Maximum Likelihood Estimation

A first approach in estimating the latent variables and the
model parameters is through maximum likelihood estimation.
In this setting, we consider the latent variables as fixed instead
of as random. Now, instead of using the prior to constrain
the latent variables, we rather impose a similar yet different
constraint. In particular, we force each matrix of latent variable
to be orthogonal column-wise; for example, we constrain T o ∈
RT×K to be such that T o>T o = IK . This choice of constraint
is motivated by two factors. First, each column corresponds
to a latent component so this fixes the variation within each
component. The two scaling parameters, λ and c, then adjust
the latent positions to an appropriate scale. Note that since
there are fewer conferences, the scale of Co and Cd will be
larger than that of T o and T d, but the scaling parameters will
adjust for that fact. Second, the orthogonality between columns
induces components that are different from each other. We then
get more meaningful components and avoid repeated or highly
correlated components.

The optimization problem can thus be stated as

argmin
Z,θ

−` (Z, θ | Y )

subject to T o>T o = IK

T d>T d = IK

Co>Co = IK

Cd>Cd = IK

To obtain estimates, we proceed to a block-wise projected
gradient descent algorithm (Algorithm 1). Cycling trough
five blocks of parameters, T o, T d, Co, Cd, θ, we perform a
gradient step and, if the current block is not θ, we perform a
reprojection of the new estimate to the closest orthogonal ma-
trix. This reprojection can be easily performed using a singular
value decomposition. Let X ∈ RN×K be an updated latent
variable matrix, which may not be column-wise orthogonal.
Given the SVD X = UDV >, where U ∈ RN×K is orthogonal
column-wise, D ∈ RK×K is diagonal and V ∈ RK×K is
orthogonal, the nearest orthogonal matrix to X is given by
setting the singular values to 1, i.e., X̃ = UV >.

Once the estimates are obtained, we can perform prediction
of a new match’s results by computing M̃ for that match
using the estimates and predict the mean scores as µ̂12 + ĉM̃ .
Furthermore, we can predict a win probability: from the
Gaussian likelihood, we have

Ym,0 − Ym,1 ∼ N
(
µm,0 − µm,1, 2σ2 (1− ρ)

)
,

so we can use the cumulative distribution function to compute
the predicted probability of µm,0 > µm,1, that is, a victory by
team 0, using plug-in estimators.



Algorithm 1 Block-wise Projected Stochastic Gradient De-
scent
Input: Observed matches (ti (m), hi (m) and Ym,i, i = 0, 1,
m ∈ [M ]) and conference assignment c (t) , t ∈ [T ]
Parameters: Convergence threshold, gradient step-size, mini-
batch size
Procedure:

1) Initialize Z and θ;
2) Until convergence of the log-likelihood:

a) Sample a mini-batch of matches;
b) Choose a block X ∈

{
T o, T d, Co, Cd, θ

}
;

c) Compute the log-likelihood and its gradient w.r.t.
X;

d) Take a gradient step to update X;
e) If X 6= θ, reproject X to the nearest orthogonal

matrix.
Output: Estimated Ẑ and θ̂.

B. Variational Inference

A second estimation approach is to approximate the pos-
terior distribution using variational inference. The posterior
distribution, for fixed model parameters, is proportional to

pθ (Z | Y ) ∝ pθ (Z, Y ) = π (Z) p (Y | Z, θ) ,

where the proportionality constant is the marginal likelihood
(or model evidence),

pθ (Y ) =

∫
pθ (Z, Y ) dZ.

The model evidence can be used as a model selection criterion:
larger model evidence is associated with better-fitting models.
Variational inference relies on the following identity: for any
distribution q with the same support as Z, and using Jensen’s
inequality,

log pθ (Y ) = log

∫
pθ (Z, Y )

q (Z)

q (Z)
dZ

> Eq
{

log
pθ (Z, Y )

q (Z)

}
= Eq {log pθ (Z | Y )}+ KL (q || π)

=: ELBOθ (q) ,

where ELBOθ (q) is known as the evidence lower bound
under q for model parameters θ and where KL (q || p) =

EX∼q
{

log q(X)
p(X)

}
is the Kullback-Leibler divergence. Then,

maximizing this lower bound is related to maximizing the
model evidence. Note that the gap between the evidence and
the lower bound is given by

log pθ (Y )− ELBOθ (q) = KL (q || pθ (· | Y )) , (2)

which implies that maximizing the ELBO corresponds to
minimizing that gap and thus minimizing the KL divergence
between the true posterior pθ (· | Y ) and the approximation q.

Now, the gap (2) is minimized by choosing q = pθ (· | Y ),
but this requires us to compute the true posterior. Instead, we
choose q to be in a sufficiently simple family within which
we can find the best approximation. In this case, we consider
a fully-factorized (mean-field) Gaussian family,

qφ (Z) =∏
x∈{o,d}

[
T∏
t=1

ϕ
(
T xt | µTxt , σ

2
Txt

) C∏
c=1

ϕ
(
Cxc | µCxc , σ

2
Cxc

)]
,

where φ denote the set of variational parameters, i.e., the set
of all means and variances. The goal is to find the best such
approximation, that is, the optimal variational parameters φ:

φ̂ = argmin
φ

KL (qφ || pθ (· | Y ))

= argmax
φ

ELBOθ (qφ) .

Furthermore, we optimize over model parameter to get the
optimization problem(

θ̂, φ̂
)

= argmax
θ,φ

ELBOθ (qφ) . (3)

In order to solve (3), we consider a Stochastic Gradien-
t Variational Bayes (SGVB) algorithm [5] summarized in
Algorithm 2. We note that the ELBO decomposes as the
expected likelihood and the KL term. The KL term has a
closed form expression: by the fully factorized form of both
the approximated posterior and the prior, we get

KL (qφ || π) = Eqφ

{∑
z∈Z

log
ϕ
(
z | µz, σ2

z

)
ϕ (z)

}

=
1

2

∑
z∈Z
− log σ2

z − 1 + µ2
z + σ2

z .

This expression is differentiable w.r.t. φ so we are able to
compute gradients. For the expected likelihood, we find

Eqφ {log pθ (Z | Y )} =

M∑
m=1

Eq {logϕ2 (Ym | µm,Σ)} .

However, the distribution of µm under the variational approx-
imation is non-trivial because of the inner product. Hence,
we resort to a Monte Carlo (MC) estimate of the expected
likelihood:

Eq {log pθ (Z | Y )} ≈ 1

B

B∑
b=1

log pθ

(
Z(b) | Y

)
,

where the Z(b)’s are independent samples from the current
posterior approximation. Similarly, the gradient w.r.t. φ could
be estimated by the same MC sample,

∇φEqφ {log pθ (Z | Y )} ≈ 1

B

B∑
b=1

∇φ log pθ

(
Z(b) | Y

)
,

but sampling Z(b) loses the dependency of the variational
parameters. We thus resort to the reparameterization trick and



Algorithm 2 Stochastic Gradient Variational Bayes with MC
approximation under reparamaterization trick
Input: Observed matches (ti (m), hi (m) and Ym,i, i = 0, 1,
m ∈ [M ]) and conference assignment c (t) , t ∈ [T ]
Parameters: Convergence threshold, gradient step-size, mini-
batch size, MC sample size
Procedure:

1) Initialize φ and θ;
2) Until convergence of the ELBO:

a) Sample a mini-batch of matches;
b) Compute KL (qφ || π) and its gradient w.r.t. φ;
c) Sample ε(b) for b ∈ [B];
d) Compute the MC estimate of the expected likeli-

hood and its gradient w.r.t. (θ, φ);
e) Take a gradient step.

Output: Estimated φ̂ and θ̂.

rather work with Z(b)
z = µz +σzε

(b)
z for iid ε(b)z ∼ N (0, 1) in

which case ∇φ log pθ
(
Z(b) | Y

)
can be computed explicitly.

To predict new matches, we proceed similarly. Given the
estimated variational and model parameters, we sample latent
variables and feed them to the decoder to find the corre-
sponding M̃ and then µ̂1n + ĉM̃ is the predicted scores.
Averaging over independent samples of latent variables yields
our predicted score.

IV. IMPLEMENTATION DETAILS

The implementation of both inference methods, as well
as the code reproducing the results, methods is available
at https://github.com/fontaine618/700-Project. All code is in
Python and relies on the pyTorch library [6] for automatic
differentiation and optimization.

A. Maximum Likelihood Estimation

For the gradient step, we use adaptive step-size computed
by the Adam optimization method [7]. The variance parameter
σ2 in the Gaussian likelihood is stored and updated on the log
scale; the correlation parameter ρ is stored and updated on the
hyperbolic tangent scale. The mini-batch size is set to be 500
where the number of matches is around 5000.

B. Variational Inference

To implement the SGVB, we use a Variational Auto-
Encoder scheme. The encoder splits into 4 encoders, one for
each of the four latent variables. Each of them consists of
two parallel fully connected linear layers without bias, with
input size equal to the number of teams T or conferences C
and with output size K. The inputs are one-hot encodings of
the team or conference index so that the weights corresponds
to the variational parameters. Again, the variance parameters
are stored and updated on the log scale. Then, a sampling
step, using the reparameterization trick, returns sampled latent
variables to be fed to the decoder. The decoder then takes
latent variables and computes the M̃m’s deterministically

before comparing them to the observed scores in the Gaussian
likelihood.

Again, we use the Adam optimizer [7] for adaptive step-
sizes in the gradient step and reparameterize σ2 and ρ as
previously. The MC sample size for estimating the expected
likelihood and its gradient is chosen to be 1.

V. RESULTS

In this section, we fit our model using the MLE to NCAA
Men’s Basketball scores from 2004 to 2017; results for the
variational inference method will be discussed in Section V-E.

Contrarily to the analysis in [1], we fit our model on each
season independently. While teams have relatively constant
performance across years, the actual composition of each
teams, in terms of players, changes rapidly. Indeed, players can
only play up to five years and the players getting the largest
share of play time tend to play even less than that (e.g., fresh-
man play less and seniors tend to play more). In particular,
good teams suffer from the one-and-done phenomenon were
very talented player only play for a year before going to the
NBA. In [1], they consider only four seasons so the variation
between years will be lesser than over our 14 seasons, so it
seems less of a problem in their analysis, but our longer time
span warranted this distinction. We discuss in Section VI-B
potential ways to model skills through time.

A. Selecting the Latent Space Dimension

One modeling aspect of [1] that was overlooked was the
selection of the dimension space. The authors consider a few
different latent dimension spaces and do not observe signif-
icant difference between them. In particular, they consider
(K1,K2) ∈ {(1, 0) , (1, 1) , (10, 10) , (5, 15)} as well as a
average of 10 models with varying dimensions, but very little
improvement in performance can be seen by increasing the
dimensionality.

In this section, we use the MLE method in order to select
an appropriate latent space dimension favoring smaller, more
interpretable latent spaces. To this end, we fit our model for
each of the 14 seasons and for K ∈ [10], and compute training
(regular-season matches) and testing (tournament matches)
metrics. In particular, we consider the log-likelihood of the
scores and their mean squared error (MSE) as well as pre-
diction accuracy and the binary cross-entropy of the predicted
win probabilites.

The results can be found in Figure 3. As expected, training
metrics improve as K increases, but not much improvement
can be observed beyond K = 2 or K = 3. Indeed, the largest
improvement in performance is between K = 1 and K = 2.
As for testing metrics, we find that the performance decreases
for K larger than 2, especially for the two metrics on scores
(log-likelihood and MSE); testing metrics on win probabilities
seem relatively constant with K. For these reasons, we choose
to consider a model with K = 2 latent dimensions: adjustment
to training data seems as good as it can be, performance on
test matches seems better and it has the convenience of being
easier to analyze visually.

https://github.com/fontaine618/700-Project
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Fig. 3. Training and testing metrics under MLE for varying latent dimension
K. Lines represent the median across the 14 seasons; bands represent the
minimum and maximum range across the 14 seasons.

We note that win prediction is much harder on the testing set
than on the training set because matches are played on neutral
grounds which removes the home-field advantage that would
ease predictions. Together with the general understanding that
out-of-sample prediction is harder, this seems to explain the
worse win prediction metrics on the testing set.

B. League-wide Variations over Time

In each of the 14 seasons considered, the model estimates
not only the latent variables, but also some global model
parameters. In this section, we investigate the variation over
time of the estimated parameters in order to extract league-
wide trends. Using the MLE method on a model with K = 2
latent dimensions, we obtain the results in Figure 4.

In the case of the home-field advantage, whose effect is
computed as 2Hc corresponding to the difference between
expected scores, we find that playing at home has the effect
of adding between 2.5 and 4.5 points to a team’s score,
depending on the season. We also find that this effect has
recently diminished, especially starting from the 2014 season.
These results seem to agree with other analyzes: for example,
[8] finds that per-team home-field advantage range roughly
between 1 and 7 points with a national average of 3.5 points.

The overall mean µ score appears to remained relatively
constant throughout the years with a slight increase in the
last four seasons. The unexplained variation in the scores,
captured by the global parameter σ2, remained fairly constant
with the seasons with indications of a decrease starting from
the 2011 season. The estimated value of σ2 ranges between
101 and 116 inducing a standard deviation of 10 to 11 points
around the fitted means. As for the correlation between two
teams’ scores ρ, we find a steady estimated value around 0.4,
which indicates moderate correlation. The inclusion of this
correlation in the model was justified from intuition, but the
data seem to corroborate our a priori.

C. Exploratory Analysis of the Latent Variables

Using MLE inference on a model with K = 2 components,
we analyze the latent variables for the 2014 season. For K = 2
components, latent skills are determined by 2 offensive skills
and 2 defensive skills: we can therefore plot the 4 latent skills
in a 2-dimensional plot we drawing the oriented line segment
from defensive skills to offensive skills. As mentioned in the
introduction, we can understand this type of plot by comparing
heads of arrows (offense) to tails of arrows (defense): when
they are close to each other, their inner product will be large
and induce larger mean score and when they are far apart,
this results in small or even negative inner products indicating
smaller mean score.

In Figure 5, we plot the 33 conferences’ latent skill and
highlight two conferences, the Big Ten conference (blue) and
the Big Sky conference (yellow). Comparing their respective
skill arrows, we see that the Big Ten would have a large mean
score because of the positive inner product and that the Big
Sky would have a small mean score because of the negative
inner product. More generally, we see that better defenses are
in the upper left quadrant as they are far from most offenses,
worse defenses on the upper right quadrant since they intersect
with some offenses, which coincides with better offenses, and
worse offenses tend to be in the lower right quadrant.

Next, we consider the team latent skills as computed from
the weighted sum of team-specific and conference-specific
skill St = Tt + λCc(t). Figure 6 depicts all 351 teams in the
2014 season, but highlight teams from the Big Ten and the
Big Sky conferences. By our modeling choices, we see that
the conference-specific and team-specific skills have the same
meaning by the additivity. We find that the conference effect is
much larger than the team effect as the variation within confer-
ences is smaller than the variation between conferences. These
results seem to confirm one of the prior model assumption that
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Fig. 4. Estimated global parameters using the MLE method on a model with
K = 2 latent dimensions. The home-field advantage refers to 2Hc, the mean
score to µ, the variance to σ2 and the correlation to ρ.

we should include the conference effect. An observation that
can be made from the stronger effect of conferences is that
conferences with longer skill arrows will have smaller mean
score when two teams from the same conference face off.
Indeed, the team-specific effect being smaller, the conference
effect dominates leading to smaller inner products and thus
smaller mean scores. Alternatively, conferences with shorter
skill arrows will have offensive skills closer to their defensive
skills, leading to larger mean scores.

D. Team and Conference Rankings

An important observation to be made about Figures 5 and 6
is that teams and conferences compare relatively transitively.
Indeed, the distribution of skill vectors does not go “full
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Fig. 5. Conference latent skills in the 2014 season.
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Fig. 6. Team latent skills in the 2014 season.

circle” as in the rock-paper-scissors example (Figure 1). This
suggest that we can produce an overall ordering of teams and
conferences. The authors of [1] propose a ranking based on
the score difference when facing an “average” opponent. While
this approach is sensible, we rather produce a ranking based
on how many opponent a given team or conference would
be favored by our model. Using our estimated latent skills
and model parameters, we predict the result of all pairwise
comparisons and compute the umber of predicted wins.

Table I contains the conference ranking for the 2014 season
where our ranking is compared to [1]’s ranking using 2010-
2014 data. First, we note that there is few instances of non-
transitivity; indeed, except for middle-of-the-pack conferences,
the predicted number of wins follows exactly the reverse
rankings. In particular, the highest-ranked conference, the Big
East conference, is predicted to beat any other conference.
Our ranking differs slightly from [1]’s ranking mostly because
of the different time span. For example, the large increase



in rankings for the Big East and Southeastern conferences
follows from the fact that these conferences add especially
strong teams in 2014 (the Big East conference had 3 teams
ranked in the Top 25 AP poll [9] at the end of the season, the
Southeastern conference had the best ranked team, Florida).

TABLE I
CONFERENCE RANKINGS FOR THE 2014 SEASON.

Conference Pred. wins [1] rank*

1 Big East 32 7
2 Big 12 31 4
3 Big Ten 30 2
4 Pacific-12 29 1
5 Atlantic Coast 28 3
6 Southeastern 27 13
7 American Athletic 26 8
8 Atlantic 10 25 5
9 Mountain West 24 11
10 West Coast 23 12
11 Missouri Valley 22 15
12 Mid-American 21 16
13 Horizon League 20 14
14 Conference USA 19 9
15 Big West 18 18
16 Sun Belt 17 20
17 Colonial Athletic Association 15 6
— Summit League 15 25
19 Ivy League 13 22
— Western Athletic 13 32
21 Metro Atlantic Athletic 12 33
— Big Sky 12 19
23 Ohio Valley 11 23
24 Patriot League 9 31
25 Southland 8 29
26 Atlantic Sun 7 34
27 Southern 6 21
28 Big South 5 10
29 Southwest Athletic 4 27
30 Northeast 3 24
31 Mid-Eastern Athletic 2 30
32 America East 1 35
33 Independent 0 —

*based on the 2010-2014 seasons.

We proceed similarly with teams by simulating all possible
matches and recording the predicted winner. Table II contains
the top 25 along with the predicted number of wins, the AP
Poll ranking [9] and their end-of-season record. Our model
predicts that Arizona should win against any of the other
350 teams and there seem to be very few instances of non-
transitivity. The AP Poll ranking [9] lists the top 25 teams
according to a panel of 65 “experts” which are trying to asses
the strength of teams from regular-season results and taking
into account the strength of their opponents. In comparison
to that ranking, our ranking seem to disagree: teams such as
UCLA and Creighton are ranked better under how model and
teams such as Michigan and Iowa St. are ranked lower than
the expert opinion. We notice a few interesting patterns with
respect to conferences. The Big East conference being ranked
so high induces high rankings for their teams: Creighton, Prov-
idence, Xavier and St John’s all get promoted under our model.
Conversely, the American Athletic conference conference is
ranked slightly lower than other power conferences and this

affects its teams’ ranking: Louisville gets a lower ranking and
teams such as Cincinnati and Connecticut are excluded from
the top 25 compared to the AP Poll.

TABLE II
TEAM RANKINGS FOR THE 2014 SEASON.

Team Pred. wins AP rank [9] Record

1 Arizona 350 4 33-5
2 Villanova 349 6 29-5
3 UCLA 347 20 28-9
— Creighton 347 16 27-8
5 Florida 346 1 36-3
6 Kansas 345 10 25-10
7 Virginia 344 3 30-7
8 St John’s 343 — 20-13
9 Duke 341 8 26-9
10 Gonzaga 340 — 29-7
11 Oklahoma 339 21 23-10
12 Louisville 338 5 31-6
13 Oregon 337 — 24-10
— Oklahoma St. 337 — 21-13
15 Baylor 336 23 26-12
16 Wisconsin 335 12 30-8
17 Michigan St. 334 11 29-9
18 Michigan 332 7 28-9
— Tennessee 332 — 24-13
20 Providence 329 — 23-12
— Utah 329 — 21-12
— Xavier 329 — 31-13
23 Ohio St. 328 22 25-10
24 Iowa St. 327 9 28-8
25 Kentucky 326 — 29-11

By highlighting the best and worse teams in the latent space,
we can get a confirmation of our interpretation of the latent
positions. In Figure 7, we depict all 351 skill vectors and show
the best and worst 25 teams according to our ranking. We
see a clear clustering pattern where offensive and defensive
skills tend to lie in the same region within each subgroup.
In particular, we find that the best offenses are very close to
the worst defenses (large positive inner products) and that the
best defenses are almost diametrically opposed to the worst
offenses (large negative inner products).

E. Variational Inference

Experimentation under the variational inference method
described in Section III-B did not yield convincing results.
In particular, the algorithm converges to mean values: team
and conference effects are set to 0 and only the home-
field advantage influences the predictions. Hence, we do not
recover meaningful latent variable estimates and the training
and testing metrics are significantly worse than using the
MLE approach (Figure 8). For example, the training prediction
accuracy agrees with predicting the team playing at home all
the time (65%) and the testing accuracy is around 50% since
all matches are played on a neutral site. Furthermore, we do
not observe any improvement nor any deterioration with the
latent dimension K.

Different attempts at improving on those results were con-
sidered, but none were particularly effective. The initialization
of the latent variables’ mean was taken to be either random
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Fig. 7. Team latent skills in the 2014 season, best and worse team highlighted.

or from the MLE estimate for a model with the same di-
mension: both cases yielded similar results. Varying the MC
approximation sample size did not improve the fit either.
Block updates of the variables and changing other optimization
details (non-adaptive step-sizes, step-size, momentum, mini-
batch size, etc.) were not successful approaches either.

VI. DISCUSSION

A. Limitations

One important observation emerging from our results is that
our model and the MLE inference seem to put a lot of weight
on conferences compared to teams. While domain knowledge
indicate that conferences have different strengths, we would
expect variation within conferences to be larger than what
was obtained. Additionally, the constraint that latent variable
matrices are orthogonal does not impose conference skills to
be the average skill in a conference.

The variational inference framework yielded rather under-
whelming results and the reason for it is yet unknown.

B. Potential Improvements

A way to model the relationship between teams and con-
ferences differently would be to consider a distance model
where, instead of an inner product, we would use a L2 distance
between team skills:

Mm,i =
∥∥∥Soti(m) − S

d
t1−i(m)

∥∥∥2
2
, i = 0, 1, m ∈ [M ].

This alternative model would produce intra-conference means
that are more consistent with intuition. Indeed, we can write

Soti(m) − S
d
t1−i(m)

=
(
T oti(m) − T

d
t1−i(m)

)
+ λ

(
Coc(ti(m)) − C

d
c(t1−i(m))

)
,

where we note that the second term will be a constant effect
for any two teams in a conference. This approach was initially
considered, but the inner product model was preferred because
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Fig. 8. Training and testing metrics under variational inference for varying
latent dimension K. Lines represent the median across the 14 seasons; bands
represent the minimum and maximum range across the 14 seasons.

it allows for positive and negative values of Mm,i in which
case the overall mean µ has the expected interpretation instead
of being the minimum score.

The model proposed by [1] assumes constant skills across
years; our model assumes independent skills across years. A
modeling choice that would assign different but related skills
across years would be to set a constraint between consecutive
years. In particular, we could the skills follow a random walk,
e.g.,

T ot [y + 1] | T ot [y] ∼ NK
(
T ot [y] , τ2IK

)
.

In the MLE inference scheme, this would simply add a
regularization term

‖T ot [y + 1]− T ot [y]‖22



to the objective function.
In additional to scores, the dataset [4] contains more detailed

match statistics, known as the box score. For example, we
have access to the number of rebounds, turnovers and blocks
for each team. These finer statistics are often associated
with specific offensive or defensive play styles and are also
relatively associated with the score. Hence, using the box
score to improve our estimation of the latent variables could
serve two purposes. First, if these statistics are related to
performance, then the estimated latent skills could be more
accurate. Second, these statistics could add meaning to the
latent variables. As an example, some offensive component
could be associated with getting more rebounds as well as the
score. A potential way to induce such meaning would be to
start from the skill difference

Soti(m) − S
d
t1−i(m)

and suppose each team statistics is, say, Gaussian with mean
equal to a linear combination of that difference. Further
imposing sparsity in the linear combination could induce a
meaning to the skills. In a similar fashion, we could perform
correlation analysis between our estimated latent skills and the
box score to label the latent components.
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