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Summary. As technology advances, Major League Baseball (MLB) has faced increased pressure from fans,

coaches, and players to use video technologies to aid umpires in making calls on the field, especially for

the notoriously subjective ball and strike calls. With this project, we will assess the ability of umpires to

make ball and strike calls that match the rulebook and that are consistent across different game situations.

Using nonlinear classification methods such as kernel linear regression and support vector machines we can

learn a strike zone for each umpire based on pitch location as well as game circumstances. After learning

strike zone classifiers for each game situation and umpire combination, we use kernel PCA to create a low

dimensional encoding of the strike zones that can be used for inference. We perform multiple analysis of

variance and mixed effects multivariate regression on the principal components to determine which factors

have a statistically significant effect on an umpire’s strike zone. Finally we compute a ranking of each umpire

and compare our top umpires with those featured on other lists.

1. Introduction

“The STRIKE ZONE is that area over home plate the upper limit of which is a horizontal line at the

midpoint between the top of the shoulders and the top of the uniform pants, and the lower level is a

line at the hollow beneath the kneecap. The Strike Zone shall be determined from the batter’s stance

as the batter is prepared to swing at a pitched ball.”[1] Those two sentences define the strike zone

in the rulebook for Major League Baseball (MLB). Calling balls and strikes is easier said than done,

however, as pitches cross home plate at speeds of up to 100mph and frequently move in different

directions as they cross the plate. MLB umpires have faced increased scrutiny in recent years as

video technology enables every player, coach, fan, and league official to be a critic and review every

call an umpire makes for accuracy.

We are interested not only in an umpire’s accuracy – the percentage of calls that matches classifica-

tion according to the strike zone defined in the rule book – but to be able to learn a representation

of a strike zone that can define a probability of a pitch being called a ball or strike based on its

location, and, later on, game situation. We use nonlinear classification methods to learn the strike
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Figure 1. Graphical model for strike zone analysis

zones, then reduce their dimension using kernel PCA, enabling us to perform inference on the princi-

pal components for each strike zone. This methodology makes it possible to determine how umpires’

strike zones change in numerous game situations. Our work is useful for players seeking to gain an

edge on the field, league officials determining which umpires should be promoted, and for umpires

who are looking to improve their skills.

1.1. Research Questions

There are many competing pressures in baseball games that may cause an umpire to alter his strike

zone, whether consciously or subconsciously. One very obvious scenario where umpires are tempted

to change is when the count is close to producing a game event–either a walk or a strike out. When

there are 3 balls in the count and the batter is close to a walk, the umpire may expand his strike zone,

and he may contract it when there are 2 strikes and the batter is close to a strike out. Additionally,

umpires may perceive the ball differently when a left handed batter is at the plate than for a right

handed batter, or when the pitcher has a specific handedness. We also consider the impact that the

inning and current score of the game may have on an umpire’s strike zone. If a game is in later

innings (towards the end) or the score is not close, the umpire may expand the strike zone since he

figures his calls are not as important and people would like the game to end. Finally we also consider

the amount of non-forward movement in the ball. When pitchers throw balls that do not cross the

plane of home plate on a perpendicular path, (e.g., a slider or a curveball), we expect the umpire

may have more trouble perceiving its location and will have a more uncertain strike zone.

Figure 1 gives a graphical depiction of the problem we are exploring. We observe the pitch location

and umpire’s call, and use these two variables to learn the classifier (the strike zone). We then need

to reduce the dimension (using, e.g., PCA) of the strike zone to be able to perform inference at the

next stage. The inference portion of our model is where we explore whether the umpire and the
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Experiments description Sample sizes

Splittings (levels) Count Min. Med. Max.

1 Ball count ([0,2], 3), Strike count ([0,1], 2) 156 96 470 4370

2 Horiz. movement (inward, outward),
Vert. movement (upward, downward)

156 600 1032 2125

3 Pitcher’s arm (L, R), Batter’s stand (L, R) 156 288 1336 2187

4 Batter’s score diff. (<-1, [-1, +1], >+1),
Inning ([1,6], 7+)

234 306 582 2401

Table 1. Description of the experiments conducted. All splittings also include the 39 umpires.

situation, u and j, have an effect on the size or location of the strike zone. The umpires are any of

the 39 umpires in our sample and the situations are any combination of game outcomes mentioned

in the previous paragraph (and listed in table 1).

1.2. Data Set

MLB publishes the location of every pitch each season through its PITCHf/x data, which we retrieved

for the 2018 season from Kaggle[5]. The PITCHf/x data includes the precise location of each pitch

as it corsses the plate, the speed at which it travelled, its horizontal and verticle movements as

it crosses the plate, as well as information about the game, such as the umpire and the players

involved. All that is needed to learn a classifier is the x and y coordinates of the pitches as well

as the label–ball or strike–as called by the umpire. We make use of the other “covariates” such as

count, batter stance, or whether the pitcher is on the home team or away team, to judge umpires’

consistency across game situations.

The data that we downloaded from Kaggle was relatively clean, but we did some minor preprocessing

to facilitate our analysis. The first step is to only consider the pitches that were not swung at,

reducing our data set from 724,444 pitches to 364,099 pitches. We next subset the data to only

include umpires with at least 30 games as the home plate umpire during the 2018 season. This

step was taken to ensure that the sample size for each umpire would be large enough for any game

situation we consider, and also to ensure that we are only considering full-time professional umpires.

By restricting the data set to include games with experienced umpires, we were left with 182,558

pitches. The next step was to clean the data by removing anything we believed to be an error in

the data. An example of this would be a pitch with a negative y coordinate, as the lowest possible y

coordinate is 0, which would indicate a ball that bounced before crossing home plate. After cleaning

the data, we are left with 178,922 pitches to consider in our analysis.

We also perform some standardization on the data set. Since the height of the strike zone changes

based on the height of the batter, we standardize the strike zone for each player. The data set

includes two variables, sz_top and sz_bot, which indicate the top and bottom of the strike zone,

respectively, for the batter. We construct a linear map from these coordinates to the mean values

of sz_top and sz_bot and then apply that map to the y coordinate of the pitch, pz, to get the
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standardized location for each pitch. The x coordinate of the pitch, px, specifies the distance from

the center of home plate. Therefore, to make sure inside and outside pitches have the same sign for

this variable regardless of a batter’s stance, we switch the sign of px for left-handed batters. Once

these steps are complete, we are able to begin our analysis.

2. Classification

Figure 2. Example of two different

strike zone classifiers

Random Forest Strikezone

Balls
Strikes

Figure 3. A random forest strike zone

Learning the strike zone for each umpire is a nonlinear classifica-

tion problem. Given a two dimensional vector for each pitch (its x

and y coordinate) and a label (the umpire’s call of ball or strike),

we want to learn the boundary that separates balls and strikes

for each umpire (his strike zone). In fig. 2 we see that there is a

clear nonlinear boundary between balls and strikes, even if that

boundary does not perfectly match the boundary specified in the

rule book, which is indicated by the red dashed line. The classi-

fiers should (1) yield boundaries which both reflect the shape of

the actual strike zone (meaning we shouldn’t overfit to the few

bad calls an umpire makes) and (2) minimize the cross validation

error when comparing the actual labels called by the umpire to

those predicted by our classifier.

We tried multiple methods to learn the umpires’ strike zones for

each unique game situation and we report the results of these

methods on two different game situations in table 2. As is ex-

pected for a low dimensional classification problem with a clear

boundary, the cross validation error is low, even in the relatively

small sample case where n = 150. For both scenarios, kernel lo-

gistic regression, kernel support vector machines, and a neural

net yield the best CV scores. Figure 4 shows the classifiers’ AU-

ROC scores vs. sample sizes (excluding neural nets). While there

is more variation in the quality of the classifiers for game situa-

tions with small sample sizes, large sample sizes do not produce

uniformly better classifiers than small samples. This indicates

that it is reasonable to compare strike zones even when sample

sizes change. High AUROC is not enough to guarantee that our

classifiers worked, however, as they also had to pass the visual

test of actually looking like a strike zone (criterion 1 in the previous paragraph). As an example,

fig. 3 shows a strike zone fit by random forest, which does not resemble the shape of the real strike

zone, even though it has a low classification error rate. Therefore we decided to use KSVM and KLR

for our classifiers in all cases (choosing the one between the two with a better AUROC) so that we

would satisfy the criteria we established in the previous paragraph.
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Classification results Score

Model AUROC Accuracy Balanced accuracy Brier

3 balls (n = 150)

AdaBoost 0.900 0.847 0.841 0.173
Gradient Boosting 0.867 0.780 0.777 0.157
Kernel Logistic Regression 0.934 0.873 0.865 0.106
MLP 0.934 0.880 0.872 0.104
Random Forest 0.900 0.853 0.813 0.130
SVC 0.936 0.867 0.863 0.108

[0, 2] balls (n = 3332)

AdaBoost 0.968 0.907 0.907 0.164
Gradient Boosting 0.968 0.909 0.908 0.068
Kernel Logistic Regression 0.972 0.911 0.906 0.065
MLP 0.972 0.913 0.908 0.065
Random Forest 0.967 0.909 0.908 0.069
SVC 0.972 0.908 0.910 0.065

Table 2. CV(5) scores for the selected model by four different criteria for two subsets (Joe West, [0, 1] strikes, [0, 2]
or 3 balls).
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Figure 4. CV results for KLR and SVC

We are especially concerned about overfitting because of

the inference procedures downstream from the classifica-

tion. When we perform inference on the lower dimensional

encodings of the strike zone, we need to be sure that the

differences in encodings reflect the difference in the um-

pire’s strike zones, and not the differences in classifiers.

Given the stark contrast of decision boundaries between

KSVM and KLR classifiers versus tree and ensemble based

methods this is likely to happen if all methods are in-

cluded. Furthermore, due to the overfitting, even when

only random forest classifiers are considered, dimension

reduction techniques might pick up artifacts of overfitted

strike zones rather than actual change in the judgment of

the umpire. The random forest will be more sensitive to

the precise location of the pitches, especially those with the “wrong” call, in the sample (thereby

overfitting), whereas the SVC and KLR are more flexible and give shapes that are more consistent.

This further supports our choice of classification methods in the analysis.

3. Dimension Reduction

Visual differences in strike zones may be obvious to baseball fans, but in order to attach statisti-

cal significance to these differences, we create low dimensional encodings of the strike zones. The

low dimensional encodings provide vectors on which we can do inference, using, e.g., multivariate

regression. The first step in creating the encodings is to discretize the strike zone, evaluating the
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probability of a strike call at every point on a grid that spans the space of observable pitch locations.

We then construct a data frame comprising the strike zone probability vectors for each combination

of umpire and game situation and use principal components analysis and a convolutional neural net

to create the low dimensional strike zone encodings.

To choose an appropriate dimensionality reduction method, we consider three criteria. irst, it has

to produce an accurate representation of each strike zone as measured by the MSE between the

reconstructed strike zones and the original strike zone. Second, we highly favor low-dimensionality

in order to find a simple encoding as well as ease the future multivariate analysis. Third, we prefer

methods producing orthogonal embeddings since it produces more interpretable components and

simplifies the incoming analysis. For example, this third criterion excludes (convolutional) neural

network autoencoders, which are an otherwise natural choice for image encoding—we can view the

discretization of the strike zone as an image. While CNNs can achieve low MSE, the resulting

embedding is much less interpretable due to its non-orthogonality. Hence, we identify that PCA

and its kernel extensions both produce orthogonal components and thus we search for a simple and

accurate encoder only within these two methods.

3.1. Principal Component Analysis
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Figure 5. Prediction error by number of components

PCA yields orthogonal embeddings, which are

desirable for inference, since fitting a multivari-

ate regression to an orthogonal response vector

is equivalent to separately fitting simple linear

regression to each element of the vector. We fit

both PCA and Kernel PCA to the strike zone

data. For Kernel PCA, we use a Gaussian kernel

and perform cross-validation in order to select

the scale and regularization parameters which

minimizes the prediction MSE. Figure 5 shows

the mean, min, and max prediction error by

number of components for PCA and KPCA. KPCA has a lower average MSE at every number

of components, suggesting it will be a better encoding technique for our problem. Additionally, the

max MSE for KPCA seems to level off at 10 components, so we used 10 components in our strike

zone encodings when doing inference.

3.2. Components Interpretation

In both cases, an advantage of the (K)PCA approach was that we were able to interpret the principal

components by their orthogonal nature. Each component affects one part of the strike zone only

through its own value. Therefore, visual inspection of the effects of each component allows us to

label them; these labels are of course arbitrary, but they still help in the interpretation of the

results. The 10 components of the selected Kernel PCA model are labelled as follows, where their
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1. Smaller 2. Uncertain 3. High inside excluded 4. Wide bottom 5. Wide middle

Figure 6. Reconstructed strike zones by varying only one component from its maximal (top) to its minimal (bottom)
observed value; other components are fixed to 0.

meaning is understood as the effect of a positive component value: the first component, Smaller,

shrinks the overall size; the second component, Uncertain, produces a softer boundary; the third

component, High inside excluded, determines whether the upper left region is excluded; components

four to six, Wide bottom, middle and top, expand the respective widths; the seventh component,

NW/SE diagonal, produces a diagonal shape; components eight to ten, Irregular 1, 2 and 3, yields

irregular and less interpretable shapes. Figure 6 shows how the first five components affect the strike

zone.

An important observation we find is that the second component is highly correlated with the sample

size. This does not come as a surprise as smaller samples should produce less accurate classifiers

and thus induce a less sharp boundary. We feel this is an interesting feature of the dimensionality

reduction process as a single component is able to capture the sample size effect so that we can

analyse the remaining components more confidently.

This interpretation of the principal components is useful because when we do inference later we will

be able to determine not just if certain factors are significant in changing the strike zone, but how

those factors affect the strike zone.

4. Inference

The third step in our analysis was to use different regression-based inference procedures to see which

game situations affect the size and shape of umpires’ strike zones. We consider four splittings: the

count when the pitch is thrown, the horizontal and vertical movement of the ball as it crosses the

plate, the handedness of the batter and pitcher, and the score and inning of the game when the pitch

is thrown.

We proceed in two steps. First, to identify whether the features influence the overall strike zone, we
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conduct a multivariate analysis of variances (MANOVA) in each experiment. Then, once we identify

the effects that significantly influence the low-dimensional representation, we fit component-wise

linear mixed models (LMM) using the selected terms as fixed effects and umpires as random effects.

4.1. MANOVA

For each experiment, we consider the multivaraite fixed effect model

components ∼ umpire + split 1 ∗ split 2

where components is the 10-dimensional vector of components, umpire is an intercept term for each

umpire and split i denotes one of the two additional features of the experiment. The model therefore

consists of four relevant terms: the collection of umpire intercepts, the main effects of split 1 and

split 2 and the interaction between split 1 and split 2. We identify terms that are significant at the

0.1% level under Wilks’ lambda test.

Table 3 contains the results of the MANOVAs for the four experiments. In all four cases, the umpire

intercept has a significant relationship with the vector of components. Our findings: only the main

effects of ball count and strike count are important; the two-way interaction and the main effects of

pitch movement and player handedness are significant; only the main effect of the inning influences

the strike zone.

4.2. Component-wise Linear Mixed Models

For each experiment and each component, we consider a univariate linear mixed effect model

component ∼ umpire + selected terms,

where now umpire is treated as a random effect and selected terms contains all terms selected

from the MANOVA. The estimates from the fixed effects tell us about which component is affected

by which feature as well as by how much and in which direction. Figure 7 contains a graphical

representation of the estimated means of the significant univariate effects.

First, a general appreciation of the results shows that the last three components of the encoding do

not capture any difference in strikes zones. This result implies that we selected too many components

at the dimensionality reduction step. Similarly, we do not find particularly strong effects beyond the

first three components; we will thus only interpret the results for the Smaller, Uncertain and High

inside excluded components.

For the Smaller component, we find that passing from a 2 strikes count to a fewer than 2 strikes

decreases the component by 0.27, indicating that umpires tend to substantially decrease the overall

size of the strike zones when the count has 2 strikes. This result is not surprising as giving the third

strike may have a large impact on the game and umpires may be reluctant to do so. Also, we find

a small difference between left-handed and right-handed batters in overall size and this effect seems

to be well-known among the baseball analytics community [4].
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MANOVA Results

Term Wilks’ lambda Num DF Den DF F Value Pr > F

Ball and strike count

Umpire 0.0142 380 1046 1.5181 0.0000
Ball count 0.4112 10 105 15.0334 0.0000
Strike Count 0.3553 10 105 19.0555 0.0000
Ball count:Strike count 0.7675 10 105 3.1805 0.0013

Horizontal and vertical pitch movement

Umpire 0.0022 380 1046 2.4258 0.0000
Horizontal 0.4325 10 105 13.7767 0.0000
Vertical 0.4624 10 105 12.2084 0.0000
Horizontal:Vertical 0.5546 10 105 8.4335 0.0000

Pitcher’s arm and batter’s stand

Umpire 0.0069 380 1046 1.8519 0.0000
Pitcher 0.3638 10 105 18.3618 0.0000
Batter 0.3205 10 105 22.2661 0.0000
Pitcher:Batter 0.3827 10 105 16.9381 0.0000

Score and inning

Umpire 0.0133 380 1782.16 2.6359 0.0000
Score 0.8282 20 362 1.7888 0.0204
Inning 0.7807 10 181 5.0838 0.0000
Score:Inning 0.8139 20 362 1.9632 0.0084

Table 3. Results from the multivariate analyses of variance on the components under four experiments.

For the Uncertain component, we remind the reader of the remark that it is strongly correlated

with sample size. Therefore, we refrain from commenting on the interpretation of these results as

the effect of the features on the overall uncertainty is largely obfuscated by the rarity of the event

and the corresponding performance of the classifier.

For the High inside excluded component, we observe stronger effects for the handedness and pitch

movement experiments. These two experiments are closely related because pitchers of a given hand-

edness will almost always throw pitches with the same horizontal movement (right-handed pitchers

generally have right-to-left movement and vice versa). Now, corners of strike zones a very suscepti-

ble to pitch movement because the perceived location across the plate slightly changes with depth:

this small change can be enough for an umpire to swing his call. Because we standardize horizontal

pitch location for batter handedness, it is not surprising to see opposite effects when the batter’s

handedness is switched.

The variance estimate for the umpires’ random effect can be used to study whether there is sub-

stantial variation between the baseline umpire strike zones when we account for the effects included

in each model. For each experiment and each component, we compute the proportion of variance

explained by the umpire’s random effect (fig. 8). This can be reinterpreted as a marginal R2 statistic,

which are typically used for the fixed effects, but can still inform us of the importance of the random

effect.
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Figure 7. Results from the component-wise linear mixed effect models applied to each experiment. Only effects
significant at the 0.1% level are shown.

We find that the variability across umpires manifests itself mostly through the overall size as well

as through the widths components; there is much less variability beyond the first five components.

Conditional on the count, we observe that a small proportion of the variability is explained by the

variability across umpires. When we do not account for that information (and account for some

other), it seems umpires exhibit larger variability, especially with respect to overall size. From this,

we can understand that the count information captures a larger amount of variability than pitch

movement, player handedness or game status.
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5. Ranking Umpires
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Figure 9. Comparison of accuracy and consistency

One way to get actionable insights from our analysis

is through the construction of umpire rankings. Our

procedure, unlike other ranking methodologies (cf.

[2] and [7]), allows us to consider both the umpire’s

accuracy–the percentage of his calls that match the

true strike zone, and his consistency–the extent to

which his strike zone does not change across different

game situations. We compute the umpire’s accuracy

score by comparing the call made by the umpire to

the classification of the pitch according to the true

strike zone and taking the percentage of correct calls.

To compute the consistency score, we use a cross val-

idation procedure. For each umpire, we use each of

his situation-specific strike zones and use it to clas-

sify all his pitches from the other situations. Then the misclassification error (according to the new

labeling) is computed for each classifier and averaged to give the consistency score.

Our rankings weight accuracy 75% and consistency 25%. Accuracy is still more important than

consistency, but players and coaches value knowing what to expect from umpires and having the

ability to plan accordingly. Table 4 compares our rankings to those compiled in [2] and [7]. As

an example of how our methodology influences the rankings, we look at Pat Hoberg, who appears

second on the two external lists but is third on ours. Though Pat Hoberg had the second highest
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Umpire Rankings

This paper Bloomberg [2] Williams [7]

Mark Wegner Mark Wegner Mark Wegner
Vic Carapazza Pat Hoberg Pat Hoberg
Pat Hoberg Alfonso Marquez Ryan Blakney
John Tumpane Nic Lentz Vic Carapazza
Alfonso Marquez Sam Holbrook N/A1

Table 4. Top 5 2018 umpires for umpires considered in our sample.

accuracy score in our sample (behind Mark Wegner), his consistency score was around the median,

leading him to be surpassed by Vic Carapazza. Carapazza’s consistency score was the highest in our

sample, which led to him getting a boost in our rankings relative to those compiled by [7]. One can

of course recompute our rankings with a different weighting scheme for accuracy and consistency

(and see different results) but our main point is that consistency can be considered and stakeholders

may find this beneficial.

6. Discussion

The authors of [3] proceed to a very similar analysis as we are conducting. Indeed, they learn

classifiers (GAMs) for each umpire and for each combination of batter and pitcher handedness.

Then, they perform Bayesian logistic regression in order to study the effect of multiple covariates

on the umpires’ calls using the classifier as the fixed baseline. They are mostly interested in the

question of “framing” pitches, but they also incorporate the count in their models. Our analysis is

different in the sense that we train classifiers for each situation and compare these classifiers.

The sequential nature of our analysis introduces some possible pitfalls:

• Since we need to train classifiers for subsets of data, this limits our analysis to the treatment

of categorical features. For example, we needed to discretize counts, scores, innings and pitch

movement into small numbers of bins.

• Similarly, we need to ensure all subsets are relatively well-populated in order for the learned

classifier to be minimally accurate. This limits the maximum number of subsets in each exper-

iment; we found that beyond including the umpire effect it was not possible to include more

than two discrete features.

• Additionally, we find that the sample size of each subset can potentially have a significant

impact on the quality of the classifiers. Small sample sizes may lead to uncertain classifiers

which was detected by the dimensionality reduction technique. We conjecture that the second

component captured most of the variation due to sample size; the orthogonality of the com-

ponents isolates this phenomenon which allows us to study the effect of the features where

1Williams only publishes a top 10 for 2018, and only 4 of his top 10 are in our sample
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sample size is accounted for. Indeed, the relative rarity of some game situations should not

impact our results.

• Related to the sample size is the pitch location sampling effect. Especially for smaller subsets,

some regions of the 2-dimensional plane are occasionally less observed. The classifier trained

on such subsets then have artificially higher uncertainty in regions where there should not be.

• Since only few features could be included in each experiments, multiple parallel experiments

had to conducted to study the impact of all interesting features. This obviously leads to multiple

testing issues: we tried to minimize this effect by choosing a fairly conservative significance

level.

Some possible fixes or possible improvements:

• We have a very good idea of what strike zones look like and the variation between them should

be minimal and contained in a small space (dimensionality reduction and inference found that

fewer than 10 components was sufficient to roughly determine a strike zone). Using that in-

formation as part of the model could help alleviate two effects. First, it would diminish the

sample size effect since we would have additional information coming from the prior knowl-

edge. Second, the imperfect sampling of the space effect would be mitigated since the prior

information would “fill” regions with fewer observations. There are many possible ways this

could be achieved. A Bayesian approach could be used where the classifier (understood as a

random function) would have a prior centered at an average strike zone. A parametric approach

could also be used where only the regions on the boundary are allowed to change. The baseline

approach suggested in [3] could also be of interest here as we are interested in the deviations

from a common strike zone.

• Techniques from functional data analysis could be used in the modeling of the strike zones

directly as functions instead of using the discrete evaluations (e.g. functional PCA [6]).

• A unified approach could potentially fix most of the problems induced by our sequential anal-

ysis. As depicted in Figure 1, we consider a latent variable model, but we do not fit the model

as a whole. Performing a single analysis on the complete model would allow the inclusion of

all features in the same analysis as well as the use of continuous features. It would then fix

the multiple testing issue and the two sampling issues as information would be shared more

efficiently. Furthermore the observation that umpire’s variability is lower when the count in-

formation is taken into account shows that a lot can be gained from a model that includes all

features at once.

7. Conclusion

Our project seeks to answer the broad question of what factors affect the size and shape of the strike

zone that professional baseball players see in each game. We begin by using nonlinear classification

methods including kearnel logistic regression and support vector machines to create probabilistic
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representations of each umpire’s strike zone. Next we use kernel PCA to create low dimensional

encodings of the strike zones learned in the first step. We then do inference, including ANOVA and

linear mixed effects models to determine what factors are most significant in determining the size

and shape of the strike zone. Finally, we use our methodology to come up with a composite ranking

score for the umpires in our sample that combines their overall accuracy (with respect to the true

strike zone) and their consistency across game situations.

One area which we do not consider is the impact of the umpires’ inconsistency on game outcomes.

Further work could explore the number of games which may have had a different outcome if the

umpire’s accuracy or consistency was improved. By focusing on pitches that were misclassified by

the standards of the rule book, analysts could incorporate other research in Sabermetrics to quantify

the number of runs an umpire created or took away through his missed calls.

Ultimately, the question of whether MLB should incorporate more technology when officiating its

games is one only the league can answer. The overthrowing of over 100 years of tradition should

not be taken lightly. With billions of dollars on the line (and the prise of winning–which cannot be

valued with money), however, teams and their players should be able to expect the fairest possible

treatment from game officials. We hope that our contribution can help move the debate forward to

ensure a long and successful future for the sport of baseball.
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• Simon: Data pre-processing, classification and encoding results, inference

• Moritz: Exploratory data analysis, classification pipeline, encoding pipeline

• Brian: Exploratory data analysis, baseball research, writing for the proposal and report

https://www.bloomberg.com/businessweek/graphics/baseballs-worst-call-of-the-day/#/umpires/ranking/2018
https://www.bloomberg.com/businessweek/graphics/baseballs-worst-call-of-the-day/#/umpires/ranking/2018
https://www.beyondtheboxscore.com/2013/6/7/4391656/investigating-the-lefty-strike-pitchfx-sabermetrics
https://www.beyondtheboxscore.com/2013/6/7/4391656/investigating-the-lefty-strike-pitchfx-sabermetrics
https://www.kaggle.com/pschale/mlb-pitch-data-20152018
https://www.kaggle.com/pschale/mlb-pitch-data-20152018
https://www.bu.edu/articles/2019/mlb-umpires-strike-zone-accuracy/

	Introduction
	Research Questions
	Data Set

	Classification
	Dimension Reduction
	Principal Component Analysis
	Components Interpretation

	Inference
	MANOVA
	Component-wise Linear Mixed Models

	Ranking Umpires
	Discussion
	Conclusion
	References
	Team Member Contributions

