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Motivation
Problem Setting

The Strike Zone
In baseball, the home plate umpire
is tasked with calling every pitch a
ball or strike, unless the batter
swings

MLB provides PITCHf/x data which
includes information about every
pitch such as location, umpire’s call,
speed, game situation, etc.[3]
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STRIKE
ZONE

We want to use this data to see how
close umpires come to calling the

true strike zone
Figure: Official MLB strike zone[2]




Motivation
A brief detour into the rules of baseball

¢ If a batter gets 3 strikes before 4 balls, he is out. Otherwise he gets to walk

to first base
e Therefore, the ball/strike call is more consequential in certain situations,
leading umpires to possibly expand or shrink their strike zones
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Our primary question is whether different umpires have different strike
zones in counts with [0, 1] strikes, 2 strikes, [0, 2] balls, 3 balls. We consider
umpires with at least 30 games behind the plate in 2018.




Motivation
Actionable items

e Evaluating umpire ability to
determine who gets
promotions, playoff
assignments, etc.

® Assessing the need for
automatic strike zone
callsfrobot umpires

e Delivering insights to pitchers
and batters

This is a problem of interest to league officials, teams, and fans alike

Country Joe's (Fontaine, Korte-Stapff and Manzo) Caught Looking



Motivation
Quantifying Differences in Strike Zones

Angel Hernandez vs. Joe West Strike Zone

° ® Ball
d Strike

The plot on the right shows that
Angel Hernandez and Joe West
have different strike zones in counts
with 2 strikes and <3 balls, but we
need to develop a method to
quantify the difference




Motivation

A graphical depiction of our problem

umpire pitch location
latent strike strike zone
zone representation
situation umpire's call




Motivation

A graphical depiction of our problem

umpire pitch location
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Motivation

A graphical depiction of our problem

2. Dimensionality

umpire : reduction : pitch location
: Encode s,; into z,;. : @
latent strike strike zone :
zone representation :
S'tuat'on ...................................................... umplre's Ca”
: 1. strike Zone Estimation

© Recover s,; from the (cyji, Lj;)'s




Motivation

A graphical depiction of our problem
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Classification
Choosing a model to learn each umpire’s strike zone

e \We want to learn the strike zone boundary for each umpire in a variety of
game situations

® Challenge is finding good boundary for specific game situations, where
sample size may be small, without overfitting

e Some methods we tried included

Kernel Logistic regression

Logistic GAM

Neural network

Kernel SVM

Tree-based methods (AdaBoost, CART, Random Forest, Gradient Boosting)




Classification
Cross validation results

CV(5) Score of the Selected Classifier for each Pitch Subset

As some umpire/situation
combinations have small sample size,
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we use cross validation to determine L0 ;':
the best classifier (and tune them) for g f
each subsample of the data Tou g
We use the AUROC score since it is less
sensitive to unbalanced classes. 02 e
090 o Selected classifier
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Classification
Comparison of Kernel and Ensemble methods

Although these methods have similar error rates, SVC produces a more
realistic boundary

Random Forest Strikezone SVC Strikezone

@ Balls @ Balls
Strikes Strikes







Dimensionality Reduction

Encoding

Original strike zone Encoding 04 Reconstructed strike zone
Smaller
Uncertain 03
High inside excluded 0.2
Wide bottom 0.1
Wide middle
0.0
Wide top
NW/SE diagonal -0l
Irregular 1 -0.2
Irregular 2 ~03
Irregular 3




Dimensionality Reduction
Model and number of components selection

PCA and Kernel PCA Encoders' Prediction Error by Number of Components
° orthogona| Average MSE
1 0.012 - PCA
empeddlngs are o —
Qe5|rable for 0,010
inference w
2 0.008
CNN Autoencoder <
e Natural choice for 5 0.006
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Dimensionality Reduction
Component interpretation

Component Interpretation
1 Overall size
2 Overall uncertainty
3 High inside
4 Lower width
5 Middle width Visualization app
6 Upper width
7 Diagonal direction
8 Irregular shape 1
9 Irregular shape 2
10 Irregular shape 3
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Inference
Multivariate Analysis of Variance

Model : components ~ umpire + ball count * strike count

MANOVA results

Term Wilks' Lambda Num.df Den.df Fvalue p-value
Umpire 0.0142 380 1046 151813 1.80e-07
Ball count 0.4112 10 105 15.0334 2.65e-16
Strike count 0.3534 10 105 19.0555 1.74e-19

Ball count:Strike count 0.7675 10 105 3.1805 0.0013




Inference

Univariate Analyses of Variance

Model : component ~ umpire + ball count = strike count
0.3

Univariate ANOVAs significant effects:
estimated differences from 3-2 count 0.2

Ball [0,2] . o1
Strike [0,1] . 0.0
Ball [0,2]:Strike [0,1] . -0.1
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Inference

Univariate Analyses of Variance

Model : component ~ umpire + batter = pitcher

0.20
Univariate ANOVAs significant effects: 0.15
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Inference

Univariate Analyses of Variance

Model : component ~ umpire + horiz. move = vert. move
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Inference

Univariate Analyses of Variance

Model : component ~ umpire + score = inning

0.20
Univariate ANOVAs significant effects: 0.15
estimated differences from close game and last innings
Batter lead 0.10
Pitcher Lead 0.05
First innings 0.00
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Ranking Umpires
A metric that accounts for consistency and accuracy

0925 °

e Umpires are frequently ranked

0920 . °

by overall accuracy, but our I
classification procedure allows hots s 0
for umpires to be ranked on R o |C
consistency, i.e., how similar is Zosto o_od  ©- .
an umpire’s strike zone across E o |
different game situations? 0905 . -

® \We construct umpire ratings ° ¢ :
that weight consistency and 0.900 * . -

accuracy 25%/75%, respectively.

0.87 0.88 0.89 0.90 0.91
Consistency




Ranking Umpires
How do we compare to Bloomberg's “Umpire Auditor”?

Our top 5 umpires from 2018 Bloomberg's top 5[1]
© Mark Wegner ©® Mark Wegner
® Vic Carapazza ® Pat Hoberg
© Pat Hoberg ® Alfonso Marquez
® John Tumpane @ Nic Lentz
©® Alfonso Marquez ® Sam Holbrook

And the worst, according to our scoring, is “Country Joe” West.







Conclusion

e Low-dimensional encoding of We also considered the following
strike zones situations:
¢ Balls and strikes count has a e Pitcher arm (L/R) and batter stand
measurable effect (L/R)
* Variability between umpires * Score and inning
e Pitch movement (up/down and
inward/outward)
Most yield positive results (omitted for
® Sequential analysis brevity)

° Prmcflpal component regression Analysis of the variability between
* Multiple testing umpires
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