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MOTIVATION



In baseball, the home plate umpire
is tasked with calling every pitch a
ball or strike, unless the batter
swings

MLB provides PITCHf/x data which
includes information about every
pitch such as location, umpire’s call,
speed, game situation, etc.[3]

We want to use this data to see how
close umpires come to calling the
true strike zone

Figure: Official MLB strike zone[2]

Motivation
Problem Setting
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• If a batter gets 3 strikes before 4 balls, he is out. Otherwise he gets to walk
to first base
• Therefore, the ball/strike call is more consequential in certain situations,

leading umpires to possibly expand or shrink their strike zones

Our primary question is whether different umpires have different strike
zones in counts with [0, 1] strikes, 2 strikes, [0, 2] balls, 3 balls. We consider
umpires with at least 30 games behind the plate in 2018.

Motivation
A brief detour into the rules of baseball
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• Evaluating umpire ability to
determine who gets
promotions, playoff
assignments, etc.
• Assessing the need for

automatic strike zone
calls/robot umpires
• Delivering insights to pitchers

and batters

This is a problem of interest to league officials, teams, and fans alike

Motivation
Actionable items

Country Joe’s (Fontaine, Korte-Stapff and Manzo) Caught Looking



The plot on the right shows that
Angel Hernandez and Joe West
have different strike zones in counts
with 2 strikes and <3 balls, but we
need to develop a method to
quantify the difference

Angel Hernandez vs. Joe West Strike Zone

Ball
Strike

Angel
Joe

Figure: Umpire Strike Zone Comparison

Motivation
Quantifying Differences in Strike Zones
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Motivation
A graphical depiction of our problem

Country Joe’s (Fontaine, Korte-Stapff and Manzo) Caught Looking



Motivation
A graphical depiction of our problem

Country Joe’s (Fontaine, Korte-Stapff and Manzo) Caught Looking



Motivation
A graphical depiction of our problem

Country Joe’s (Fontaine, Korte-Stapff and Manzo) Caught Looking



Motivation
A graphical depiction of our problem

Country Joe’s (Fontaine, Korte-Stapff and Manzo) Caught Looking



CLASSIFICATION



• We want to learn the strike zone boundary for each umpire in a variety of
game situations
• Challenge is finding good boundary for specific game situations, where

sample size may be small, without overfitting
• Some methods we tried included

• Kernel Logistic regression
• Logistic GAM
• Neural network
• Kernel SVM
• Tree-based methods (AdaBoost, CART, Random Forest, Gradient Boosting)

Classification
Choosing a model to learn each umpire’s strike zone

Country Joe’s (Fontaine, Korte-Stapff and Manzo) Caught Looking



As some umpire/situation
combinations have small sample size,
we use cross validation to determine
the best classifier (and tune them) for
each subsample of the data
We use the AUROC score since it is less
sensitive to unbalanced classes.
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Classification
Cross validation results
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Although these methods have similar error rates, SVC produces a more
realistic boundary

Random Forest Strikezone

Balls
Strikes

SVC Strikezone

Balls
Strikes

Classification
Comparison of Kernel and Ensemble methods
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DIMENSIONALITY REDUCTION



Original strike zone
Smaller

Uncertain

High inside excluded

Wide bottom

Wide middle

Wide top

NW/SE diagonal

Irregular 1

Irregular 2

Irregular 3

Encoding

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4
Reconstructed strike zone

Dimensionality Reduction
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PCA and Kernel PCA
• orthogonal

embeddings are
desirable for
inference

CNN Autoencoder
• Natural choice for

image encoding
• Similar prediction

error
• non-orthogonal
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Dimensionality Reduction
Model and number of components selection
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Component Interpretation

1 Overall size
2 Overall uncertainty
3 High inside
4 Lower width
5 Middle width
6 Upper width
7 Diagonal direction
8 Irregular shape 1
9 Irregular shape 2
10 Irregular shape 3

Visualization app

Dimensionality Reduction
Component interpretation
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INFERENCE



Model : components ∼ umpire + ball count ∗ strike count

MANOVA results

Term Wilks’ Lambda Num. df Den. df � value ?-value

Umpire 0.0142 380 1046 1.51813 1.80e-07
Ball count 0.4112 10 105 15.0334 2.65e-16
Strike count 0.3534 10 105 19.0555 1.74e-19
Ball count:Strike count 0.7675 10 105 3.1805 0.0013

Inference
Multivariate Analysis of Variance
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Model : component ∼ umpire + ball count ∗ strike count
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Model : component ∼ umpire + batter ∗ pitcher
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Model : component ∼ umpire + horiz. move ∗ vert. move
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Model : component ∼ umpire + score ∗ inning
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RANKING UMPIRES



• Umpires are frequently ranked
by overall accuracy, but our
classification procedure allows
for umpires to be ranked on
consistency, i.e., how similar is
an umpire’s strike zone across
different game situations?
• We construct umpire ratings

that weight consistency and
accuracy 25%/75%, respectively.
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Ranking Umpires
A metric that accounts for consistency and accuracy
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Our top 5 umpires from 2018
1 Mark Wegner
2 Vic Carapazza
3 Pat Hoberg
4 John Tumpane
5 Alfonso Marquez

Bloomberg’s top 5[1]
1 Mark Wegner
2 Pat Hoberg
3 Alfonso Marquez
4 Nic Lentz
5 Sam Holbrook

And the worst, according to our scoring, is “Country Joe” West.

Ranking Umpires
How do we compare to Bloomberg’s “Umpire Auditor”?
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CONCLUSION



Findings

• Low-dimensional encoding of
strike zones
• Balls and strikes count has a

measurable effect
• Variability between umpires

Remarks

• Sequential analysis
• Principal component regression
• Multiple testing

Further analyses

We also considered the following
situations:
• Pitcher arm (L/R) and batter stand

(L/R)
• Score and inning
• Pitch movement (up/down and

inward/outward)
Most yield positive results (omitted for
brevity)

Analysis of the variability between
umpires

Conclusion
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THANK YOU!
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QUESTIONS?
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