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1. Additional details on aMTM variants

1.1. Sampling schemes

Table S1 contains an algorithmic description of different types of candidates used in the
aMTM algorithm. The derivations for the EA candidates can be found in Fontaine (2019,
Section 5.3.4.2); those for the RQMC candidates can be found in Fontaine (2019, Example
4.3). Independent and common random variable candidates have trivial formulations.

1.2. Update variations

Local updates A notable difference between (ASW)AM and RAM updates is the use

of the running mean µ
(k)
n . While the (ASW)AM update uses the difference between the

new point and the current estimate for the mean (xn+1 − µ(k)
n ) to update the covari-

ance, the RAM update rather uses the proposed step (y − xn). The latter seems more
appropriate to locally adjust proposal densities to the target distribution. Indeed, using
a running mean will potentially produce marginal covariances that are all similar to one
another; using the proposed step may prevent this uniformization. We thus propose to

modify the (ASW)AM updates in (3.2) by making local updates in which xn+1 − µ(k)
n is

replaced by y − xn. In that case, the running mean update (3.1)is no longer required.
Up to this point, the only marginal covariance updated in a given iteration is that of the

selected candidate. We now propose two adaptation schemes imposing some conditions
on the other marginal covariances.
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2 S. Fontaine and M. Bédard

Global proposal We propose to consider the first proposal density (k = 1) as a global
one. Its marginal covariance is thus adapted at each iteration—using any of the three
update rules—no matter if the candidate was generated from this proposal or not. Then,
we expect that marginal covariance to approach the target’s global covariance, while
the covariance matrices of the other densities should explore more local properties of
the target density. This approach is particularly well-suited to multimodal densities as
the global density provides a way to jump between modes, while other densities propose
jumps within specific modes. Computationally, adapting a second covariance at every
iteration doubles the adaptation cost.

Scale adaptation In the ASWAM case, we propose to adapt the scale parameter λ
(k)
n

of densities that are not selected very often; indeed, these densities are rarely adapted
and may therefore never recover from a bad initialization. Given a target floor selection
rate s∗ ∈ [0, 1], we decrease the scale parameter whenever a proposal density’s selection
rate drops below s∗. Indeed, for importance weights (2.4) or weights proportional to the
target (2.5), the fact of being selected too rarely is generally related to the scale being
too large.
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Type Candidates (Step (a)) Shadow points (Step (d))

Independent Sample

Y (j) ∼ q(j)θ (·|xn)

independently for j = 1 , . . . ,K.

Sample

Y (j) ∼ q(j)θ (·|y)

independently for j 6= k.

EA
ρ = −1

K−1

Beforehand, compute the singular
value decomposition (SVD)

ΨK = (XΛ1/2)(XΛ1/2)> ,

where

ΨK = ρIK ⊗ Id + (1− ρ)IdK .

For k = 1 , . . . ,K:

– Sample Z(k) iid∼ N d(0d, Id),
– Compute u(k) = XΛ1/2z(k),
– Compute y(k) = xn + S(k)u(k).

Beforehand, compute the SVD

ΦK−1 = (X ′Λ′1/2)(X ′Λ′1/2)>,

where

ΦK−1 = ρIK−1 ⊗ Id + Id(K−1) .

For j 6= k:

– Sample Z(j) iid∼ N d(0d, Id),

– Compute u
(j)
∗ = X ′Λ′1/2z(j),

– Compute

x(j)∗ = y + S(j)
(
u(j)
∗ − ρu(k)

)
.

RQMC
Koborov rule
with 1 6 a < K

Sample

U ∼ Uniform[0, 1)d .

For k = 1 , . . . ,K:
– Compute

u(k) ≡1
k − 1

K

(
1, a , . . . , ad−1

)
+u ,

– Compute z(k) = F−1(u(k)),
– Compute y(k) = xn + S(k)z(k).

Compute

u∗ = F
(

(S(k))−1(y − xn)
)
.

For j 6= k:
– Compute

u(j)
∗ ≡1

j − 1

K

(
1, a , . . . , ad−1

)
+u∗ ,

– Compute z
(j)
∗ = F−1(u

(j)
∗ ),

– Compute x
(j)
∗ = y + S(j)z

(j)
∗ .

Common RV Sample

Z ∼ N d(0d, Id) .

For k = 1 , . . . ,K, compute

y(k) = xn + S(k)z .

Compute

z∗ = (S(k))−1(y − xn) .

For j 6= k, compute

x(j)∗ = y + S(j)z∗ .

Table S1. Summary of the different types of candidates used in the aMTM algorithm at the MTM
sampling step; the rest of the MTM sampling remains unchanged. The sampling of candidates and
shadow points is described algorithmically. Notation: xn is the current state of the chain, F is the

standard normal CDF, y = y(k) is the selected proposal, Σ(k) = S(k)S(k)> is the square root
decomposition and ⊗ denotes the usual Kronecker product.
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4 S. Fontaine and M. Bédard

2. Additional details on experiments

Region x1 x2 x4 x5 iid weight

1 (orange) – – > 0 > 3 3.5%
2 (blue) – – < 0 > 3 3.5%
3 (green) > 0 > 3 – – 16.7%
4 (yellow) < 0 > 3 – – 16.6%
5 (black) not in regions 1-4 59.7%

Table S2. Definition of regions used to compute the lower bound on the total variation distance
between empirical distributions coming from MCMC samples and iid samples. Color codes refer to

Figure S1.
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Figure S1. 1,000 iid samples from the banana target (5.1). Regions are defined in Table S2.
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3. Proofs

3.1. Results on MTM transitions

Consider a MTM transition P with joint proposal density q(·|x). For k = 1 , . . . ,K, the
conditional density of y(−k) given y(k) is q(−k)(·|y(k), x) and the marginal density of y(k)

is q(k)(·|x). The generalized MTM acceptance probability is given by

αMTM

(
y, y(−k)|x, x(−k)

∗

)
= min

{
1,
π(y)q(k)(x|y)w̄(k)(x, x

(−k)
∗ |y)

π(x)q(k)(y|x)w̄(k)(y, y(−k)|x)

}
,

where x
(−k)
∗ ∼ q(−k)(·|x, y) are the shadow points, and where

w̄(k)(y, y(−k)|x) =
w(k)(y|x)∑K

j=1 w
(j)(y(j)|x)

is the probability of choosing the k-th candidate.
We define some notation in order to simplify the MTM transition. The transition

admits the following (pseudo-)density:

p(y|x) = a(y|x) +R(x)δx(y) ,

where a(y|x) is the density for transitioning from x to y using any of the K candidates
and any shadow sample, and where R(x) = 1 −

∫
X a(y|x) dy is the integrated rejection

probability. Since moving from x to y can be achieved through any of the K candidates,
we therefore decompose

a(y|x) =

K∑
k=1

A(k)(y|x)q(k)(y|x) ,

where A(k)(y|x) is the density for accepting a move from x to y through the k-th candi-
date. We have

A(k)(y|x) =

∫
XK−1

∫
XK−1

q(−k)(y(−k)|y, x)w̄(y; y(−k)|x)αMTM(y, y(−k)|x, x(−k)
∗ )

× q(−k)(x
(−k)
∗ |y, x) dy(−k) dx

(−k)
∗ .

Finally, we define the integrated probability of accepting the k-th candidate as the new
point,

A
(k)

(x) =

∫
X
A(k)(y|x)q(k)(y|x) dy ,

so that we may write

R(x) = 1−
K∑
k=1

A
(k)

(x) .

Naturally, when we want to make the dependence of a MTM transition on its set of
parameters θ explicit, we simply index position each of the above definitions by θ.
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6 S. Fontaine and M. Bédard

Proposition 3.1. Suppose that the marginal proposal densities satisfy

q(k)(y|x) > 0 ⇔ q(k)(x|y) > 0 , k = 1 , . . . ,K .

Then, the MTM transition satisfies the detailed balance condition,

p(x|y)π(y) = p(y|x)π(x) , ∀x, y ∈ X , (S1)

for any weight function w(k)(y|x) that is positive whenever x, y ∈ X .

Proof. If x = y, then (S1) trivially holds. Thus, we may assume that y 6= x, in which
case δX(y) = 0 and

p(y|x) = a(y|x)

=

K∑
k=1

∫
XK−1

∫
XK−1

q(y, y(−k)|x)w̄(y; y(−k)|x)αMTM(y, y(−k)|x, x(−k)
∗ )

× q(−k)(x
(−k)
∗ |y, x) dy(−k) dx

(−k)
∗ .

Then, we decompose the joint proposal density as

q(y, y(−k)|x) = q(−k)(y(−k)|y, x)q(k)(y|x) .

We also rewrite the MTM acceptance probability in a more symmetric form,

αMTM(y, y(−k)|x, x(−k)
∗ ) = π(y)q(k)(x|y)w̄(k)(x;x

(−k)
∗ |y)

×min

{
1

π(y)q(k)(x|y)w̄(k)(x;x
(−k)
∗ |y)

,
1

π(x)q(k)(y|x)w̄(k)(y; y(−k)|x)

}
.

We can now write

a(y|x)π(x) =

K∑
k=1

∫
XK−1

∫
XK−1

π(x)q(−k)(y(−k)|y, x)q(k)(y|x)w̄(y; y(−k)|x)

× π(y)q(k)(x|y)w̄(k)(x;x
(−k)
∗ |y)q(−k)(x

(−k)
∗ |y, x)

×min

{
1

π(y)q(k)(x|y)w̄(k)(x;x
(−k)
∗ |y)

,
1

π(x)q(k)(y|x)w̄(k)(y; y(−k)|x)

}
dy(−k) dx

(−k)
∗ .

By direct inspection, we see that the expression is completely symmetric under the swap

(y, y(−k))↔ (x, x
(−k)
∗ ). Hence,

a(y|x)π(x) = a(x|y)π(y) ,

and the detailed balance condition (S1) is satisfied.
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Remark 3.1. Note that a similar result was obtained by Casarin, Craiu and Leisen
(2013, in the appendix) for a slightly less general form of MTM acceptance probability.

Proposition 3.2. Let π be a target density with connected support X . Suppose that
π and the weight function w(k)(·|x) are bounded above on X and below on any compact
subset of X , for any fixed x ∈ X . Further suppose that there exists δ, ε > 0 such that the
marginal proposal densities are locally positive, that is,

||x− y||2 < δ ⇒ q(k)(y|x) > ε , k = 1 , . . . ,K .

Then, the MTM transition is π-irreducible and aperiodic.

Proof. The proof of π-irreducilibity appeals to Meyn and Tweedie (2009, Proposition
4.2.1) which states that a transition P is φ-irreducible if and only if, for all x ∈ X and for
all measurable B such that φ(B) > 0, there exists m ∈ N with Pm(B|x) > 0. Thus, let
us consider x ∈ X as well as a measurable set B ⊆ X with positive probability π(B) > 0.
By connectedness of X , we can find a path between x and any point in B. In particular,
we can always find a path of length m ∈ N from x to some xm ∈ B such that each step
is at most of size δ, i.e. ||xi − xi−1||2 < δ (i = 1, , . . . ,m) and each xi has positive density
π(xi) > 0. Around each xi, we consider the ball of radius δ, denoted

Bδ(xi) = {x ∈ Rd | ||xi − x||2 6 δ} .

Since xi is in the support of π, then π (Bδ(xi)) > 0 by the definition of a support. Now,
we show that the transition from one ball to the next happens with positive probability.
Consider i ∈ {0 , . . . ,m−1} and x ∈ Bδ(xi). Then, the probability of landing in the next
ball is bounded below by the probability of landing in the next ball through an accepted
proposal, i.e.

P (Bδ(xi+1)|x) >
K∑
k=1

∫
Bδ(xi+1)

A(k)(y|x)q(k)(y|x) dy .

Now, A(k) is positive for any y ∈ Bδ(xi+1) since it is the expectation of a positive function
(w̄ > 0 and αMTM > 0 both follow from the assumptions). Then, since the marginal den-
sity q(k) is also positive on Bδ(xi+1) and since Bδ(xi+1) has positive probability, we find
P (Bδ(xi+1)|x) > 0. By induction, we can show that the i-step transition P i(Bδ(xi)|x)
is positive for i = 1 , . . . ,m. In particular, it holds for m so that Pm(Bδ(xm)|x) > 0
from which we find Pm(B|x) > 0 because xm ∈ B ∩ X . By Meyn and Tweedie (2009,
Proposition 4.2.1), P is π-irreducible.

To prove aperiodicity, we show that P is strongly aperiodic, meaning that there exists
a (ν, 1)-small measurable set B with ν(B) > 0. A (ν, 1)-small set is such that, for all
x ∈ B and for all measurable sets C,

P (C|x) > ν(C) . (S2)

We now consider B = Bδ/2(x) and construct a measure ν concentrated on B satisfying
the minorization condition (S2). Thus, let us consider x ∈ B and C measurable. Then, we
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8 S. Fontaine and M. Bédard

can bound P (C|x) > P (C∩B|x); we can also bound the latter using accepted proposals,
leading to

P (C|x) >
K∑
k=1

∫
C∩B

A(k)(y|x)q(k)(y|x) dy .

We now define K partitions of the support, one for each candidate. Given the current

state x, the candidates y(−k), and the shadow sample x
(−k)
∗ , this partition groups together

all the proposals y that are automatically accepted, given that the k-th candidate was
selected:

D(k)(x) =

{
y ∈ X

∣∣∣ π(y)w̄(k)(x;x
(−k)
∗ |y)

π(x)w̄(k)(y; y(−k)|x)
6 1

}
.

Note that, contrarily to what is suggested by the notation, D(k)(x) also is a function of

y(−k) and x
(−k)
∗ . For y ∈ D(k)(x), we have

αMTM(y, y(−k)|x, x(−k)
∗ ) =

π(y)w̄(k)(x;x
(−k)
∗ |y)

π(x)w̄(k)(y; y(−k)|x)
,

while for y 6∈ D(k), we have αMTM(y, y(−k)|x, x(−k)
∗ ) = 1. We can now split the integral

over B ∩ C into two parts over which the form of αMTM is known.
For y ∈ D(k), the integrand takes the form

w̄(k)(y; y(−k)|x)
π(y)w̄(k)(x;x

(−k)
∗ |y)

π(x)w̄(k)(y; y(−k)|x)
q(−k)(y(−k)|y, x)q(−k)(x

(−k)
∗ |x, y)q(k)(y|x)

= w̄(k)(x;x
(−k)
∗ |y)

π(y)

π(x)
q(−k)(y(−k)|y, x)q(−k)(x

(−k)
∗ |x, y)q(k)(y|x) .

Since we will integrate over y(−k) and x
(−k)
∗ , we try to bound all terms that are not the

densities of these variables. In particular, we search a lower bound for

w̄(k)(x;x
(−k)
∗ |y)

π(y)

π(x)
q(k)(y|x) .

When x ∈ B and y ∈ C ∩ B ⊆ B, we can bound each term by making use of the
assumptions. Indeed, we have ||y − x||2 6 δ so that q(k)(y|x) > ε. Furthermore, from the
conditions on the weight functions, there exists 0 < a < A <∞ such that w(k)(x|y) > a

and w(j)(x
(j)
∗ |y) 6 A so that w̄(k)(x;x

(−k)
∗ |y) > a/KA for all ||y − x||2 6 δ and all x

(−k)
∗ .

Hence, we find

w̄(k)(x;x
(−k)
∗ |y)

π(y)

π(x)
q(k)(y|x) >

aε

KA

π(y)

π(x)
>

aε

KA

infy∈B π(y)

supy∈B π(y)
,

which is positive because all quantities are positive (π is bounded below and above on
B = Bδ/2(x) compact).
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On y 6∈ D(k), the integrand takes the form

w̄(k)(y; y(−k)|x)q(−k)(y(−k)|y, x)q(−k)(x
(−k)
∗ |x, y)q(k)(y|x) ,

which means we aim to bound

w̄(k)(y; y(−k)|x)q(k)(y|x) .

For the same reasons as before, we have w̄(k)(x;x
(−k)
∗ |y) > a/KA and q(k)(y|x) > ε.

Then, we note that infB π/ supB π is always less than 1 so we find the same bound as in
the case y ∈ D(k), i.e.

w̄(k)(y; y(−k)|x)q(k)(y|x) >
aε

KA
>

aε

KA

infy∈B π(y)

supy∈B π(y)
.

We therefore find the following bound on P (C|x):

P (C|x) >
K∑
k=1

∫
C∩B

A(k)(y|x)q(k)(y|x) dy

=

K∑
k=1

(∫
C∩B∩D(k)

+

∫
C∩B∩(D(k))c

)
A(k)(y|x)q(k)(y|x) dy

>
K∑
k=1

(∫
C∩B∩D(k)

+

∫
C∩B∩(D(k))c

)∫
XK−1

∫
XK−1

q(−k)(y(−k)|y, x)q(−k)(x
(−k)
∗ |x, y)

aε

KA

infB π

supB π
dx

(−k)
∗ dy(−k) dy

=

K∑
k=1

∫
C∩B

aε

KA

infB π

supB π

∫
XK−1

∫
XK−1

q(−k)(y(−k)|y, x)q(−k)(x
(−k)
∗ |x, y) dx

(−k)
∗ dy(−k) dy

=

K∑
k=1

∫
C∩B

aε

KA

infB π

supB π
dy

=
aε

A

infB π

supB π
λLeb (C ∩B) ,

where λLeb is the Lebesgue measure on Rd. Since

aε

A

infB π

supB π
=: c0 > 0 ,

we have that

P (C|x) > ν(C) ,

where ν(C) = c0λ
Leb (C ∩B) is a non-trivial measure concentrated on B, as required.

Finally, we note that ν(B) = c0λ
Leb(B) > 0 since c0 > 0 and λLeb(B) > 0, where B is a

ball with positive radius δ/2 > 0.
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In the context of Markov transitions, a function h : Rd → [0,∞] is said to be harmonic
for a transition P if h = Ph everywhere, that is,

h(x) =

∫
X
h(y)P ( dy|x) , x ∈ Rd .

From Tierney (1994, Theorem 2), we know that a recurrent Markov transition P is
Harris-recurrent if and only if every bounded harmonic function is a constant function.
We use this result to show that recurrence and Harris-recurrence happen simultaneously
for MTM transitions.

Proposition 3.3. Let P be a MTM transition for a given target density π. If P is
π-irreducible, then P is Harris-recurrent.

Proof. By Proposition 3.1, the MTM transition satisfies the detailed balance condi-
tion. By Robert and Casella (2004, Theorem 6.46), the MTM transition admits π as its
invariant distribution. By Tierney (1994, Theorem 1), the MTM transition is positive re-
current. From Nummelin (1984, Proposition 3.13), we know that a recurrent π-irreducible
Markov transition P is such that every bounded harmonic function h is constant at least
π-almost everywhere. Hence, we only require to extend that result to every x ∈ Rd.

We define the set H as containing the points over which a function h is not constant,
i.e.,

H = {x ∈ X |h(x) 6= πh} .
By the above argument, we find π(H) = 0. Then, since the measure of H is null, the
probability of transitioning from x ∈ X to H must also be 0:

a (H|x) =

∫
H

K∑
k=1

A(k)(y|x)q(k)(y|x) dy = 0 ,

since q(k) is assumed to be a density and H has zero measure.
Now, since h is harmonic with respect to P , we can decompose

h(x) =

∫
Rd
h(y)P ( dy|x) =

∫
H

h(y)P ( dy|x) +

∫
Hc
h(y)P ( dy|x) .

The former term satisfies∫
H

h(y)P ( dy|x) =

∫
H

h(y)

K∑
k=1

[
A(k)(y|x)q(k)( dy|x)

]
+

∫
H

h(y)R(x)δx( dy)

= 0 + h(x)R(x) I (h(x) 6= πh) .

For the latter term, we obtain∫
Hc
h(y)P ( dy|x) =

∫
Hc
πh

K∑
k=1

[
A(k)(y|x)q(k)( dy|x)

]
+

∫
Hc
πhR(x)δx( dy)

= πh(1−R(x)) + πhR(x) I (h(x) = πh) .
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Combining both expressions, we find that h must satisfy

h(x) = πh+R(x)(h(x)− πh) I(h(x) 6= πh) .

Factorizing yield

0 = (h(x)− πh)(R(x) I(h(x) 6= πh)− 1) . (S3)

Thus, if h(x) 6= πh, we must have R(x) = 1, but this would contradict the π-irreducibility
of the transition whenever x ∈ X because this means that the probability of staying at
x is 1. Hence, the only points where we can have h(x) 6= πh are x 6∈ X . Then, by
construction of MTM transitions, 0 < R(x) < 1 so that h(x) = πh must hold to satisfy
(S3). This shows h ≡ πh.

3.2. Results on adaptive MCMC

3.2.1. Additional background on adaptive algorithms

We say that a family of MCMC transitions {Pθ}θ∈Θ satisfies the uniform geometric
ergodicity on compact sets condition (Andrieu and Moulines, 2006, Assumption A1) if
there exists a test function V : X → [1,∞) with supX V <∞ such that, for any compact
K ⊆ Θ, the following two conditions hold :

(i) Minorisation. There exists C ∈ B(X ), δ > 0 and a probability measure ν with
ν(C) > 0 such that

Pθ(A|x) > δν(A) , ∀ A ∈ B(X ), θ ∈ K, x ∈ C .

(ii) Geometric drift. There exists λ ∈ [0, 1) and b ∈ (0,∞) such that

PθV (x) 6

{
λV (x), x 6∈ C,
b, x ∈ C,

∀ θ ∈ K ,

where PθV (x) =
∫
V (z)Pθ(z|x) dz.

We say that a family of update functions {Hθ}θ∈Θ is V -Lipschitz for some test function
V (typically the same as in the geometric drift condition) if, for any compact K ⊆ Θ, we
have

sup
θ∈K
||Hθ||V <∞ and sup

θ 6=θ′∈K×K
||θ − θ′||−1

2 ||Hθ −Hθ′ ||V <∞,

where ||µ||V defines the V -norm of the function f for some test function V , that is,

||f ||V = sup
x∈X

||f(x)||2
V (x)

.

We say that a family of transitions is V -Lipschitz on K if there exists C < ∞ such
that, for all functions f : X → R, with ||f ||V <∞, and all r ∈ [0, 1],

||Pθf − Pθ′f ||V r 6 C||f ||V r ||θ − θ
′||2, ∀ θ, θ′ ∈ K .
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12 S. Fontaine and M. Bédard

3.2.2. Diminishing adaptation

Define the V -norm of a (possibly signed) measure µ as

|||µ|||V = sup
g:|g|6V

|µ(g)|,

where we use the triple bar notation to differentiate with the V -norm of a function defined
earlier. Note that |||·|||1 is equivalent to ||·||TV:

||µ||TV = sup
B∈B(X )

|µ(B)| = 1

2
sup
g:|g|61

|µ(g)| = 1

2
|||µ|||1.

Proposition 3.4. Suppose {Pθ}θ∈Θ satisfies the uniform geometric ergodicity on com-
pact sets, {Hθ}θ∈Θ is V -Lipschitz and {Pθ}θ∈Θ is V -Lipschitz on any compact subset
of Θ for the same test function V . If supθ∈K ||Hθ||V < ∞ for any K ⊆ Θ compact and
{θn}n>0 is bounded in probability, then the adaptive MCMC algorithm is such that∣∣∣∣∣∣Pθn+1 − Pθn

∣∣∣∣∣∣
V

P−→ 0, n→∞.

In particular, if V ≡ 1, then the algorithm satisfies the Diminishing Adaptation condition.

Proof. From the condition onHθ, for any compactK ⊆ Θ, we have H̃(K) := supθ∈K ||Hθ||V <
∞ . In particular, we have

||H(θ, x)||2 6 H̃(K)V (x) , ∀ x ∈ X , θ ∈ K .

The uniform geometric ergodicity on compact sets ensures that {V (Xn)}n>0 is bounded

in probability (Fontaine, 2019, Proposition 3.5). Hence, for all ε > 0, there exists Ṽ =

Ṽ (ε) < ∞ such that Px0,θ0

(
V (Xn) 6 Ṽ

)
> 1 − ε

4 for all n > 1, where (x0, θ0) are the

initial values of the joint chain {(Xn, θn)}n>0. Then,

Px0,θ0

(
||H(θ,Xn)||2 6 H̃(K)Ṽ | θ ∈ K

)
> 1− ε

4
.

Then, for θn+1 − θn = γn+1H(θn, Xn), we find

Px0,θ0

(
||θn+1 − θn||2 6 γn+1H̃(K)Ṽ | θn ∈ K

)
> 1− ε

4
, ∀ θn ∈ K .

Since {θn}n>0 is bounded in probability, there exists a compact K ⊂ Θ such that

Px0,θ0 (θn ∈ K) > 1− ε

4
,

from which we find

Px0,θ0

(
||θn+1 − θn||2 6 γn+1H̃(K)Ṽ

)
>
(

1− ε

4

)2

.
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Supplement to aMTM 13

The Lipschitz transition condition implies that there exists C <∞ with∣∣∣∣Pθn+1
f − Pθnf

∣∣∣∣
V
6 C||f ||V ||θn+1 − θn||2, ∀ x ∈ X , θn+1, θn ∈ K .

Thus, we can bound∣∣∣∣∣∣Pθn+1
(· | x)− Pθn(· | x)

∣∣∣∣∣∣
V

= sup
f :|f |6V

∣∣(Pθn+1
f − Pθnf)(x)

∣∣
6 sup
f :|f |6V

sup
y∈X

∣∣(Pθn+1
f − Pθnf)(y)

∣∣
= sup
g:|g|61

sup
y∈X

1

V (y)

∣∣(Pθn+1
g − Pθng)(y)

∣∣
= sup
g:|g|61

∣∣∣∣Pθn+1
g − Pθng

∣∣∣∣
V

6 sup
g:|g|61

C||g||V ||θn+1 − θn||2

= C||θn+1 − θn||2.

We then find

Px0,θ0

(∣∣∣∣∣∣Pθn+1
− Pθn

∣∣∣∣∣∣
V
6 γn+1CH̃(K)Ṽ | θn+1 ∈ K

)
>
(

1− ε

4

)2

.

Using the boundedness in probability of θn+1 ∈ K :

Px0,θ0

(∣∣∣∣∣∣Pθn+1
− Pθn

∣∣∣∣∣∣
V
6 γn+1CH̃(K)Ṽ

)
>
(

1− ε

4

)3

.

Finally, γn → 0 implies that, for any ε′ > 0, there exists M = M(ε′) ∈ N such that

γn+1CH̃(K)Ṽ 6 ε′ whenever n >M . Hence, for all n >M , we have

Px0,θ0

(∣∣∣∣∣∣Pθn+1
− Pθn

∣∣∣∣∣∣
V
6 ε′

)
>
(

1− ε

4

)3

> 1− ε .

3.3. Results on the aMTM algorithm

3.3.1. Diminishing adaptation

Theorem 3.1. Let π be a target density with compact support X ⊆ Rd. Consider
a family of MTM transitions {Pθ}θ∈Θ with compact parameter space Θ and satisfying
the V -Lipschitz condition on Θ. An adaptive MTM algorithm on {Pθ}θ∈Θ using the V -
Lipschitz update family Hθ satisfying

sup
θ∈K
||Hθ||V <∞ ,

with V ≡ 1 satisfies the diminishing adaptation condition.
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14 S. Fontaine and M. Bédard

Proof. We verify the conditions of Proposition 3.4. When Θ and X are assumed to be
compact, we can simply choose V ≡ 1 as the test function in the uniform geometric er-
godicity condition. Since Θ is assumed to be compact, we directly have {θn}n>0 bounded
and therefore bounded in probability. The conditions on the family of updates are verified
by hypothesis.

3.3.2. Lipschitz transitions

Proposition 3.5. Let {ϕΣ}Σ∈S be a collection of d-dimensional Gaussian densities
with mean 0d and covariance Σ ∈ S ⊆ C+

d . If S is compact, then∫
Rd
|ϕΣ(z)− ϕΣ′(z)|λ( dz) 6

d

λmin
||Σ− Σ′||F ,

where λmin > 0 is the smallest possible eigenvalue of a covariance Σ ∈ S and where ||·||F
denotes the usual Frobenius norm.

Proof. Since S is compact, we can find 0 < λmin 6 λmax <∞ such that all eigenvalues
of any Σ ∈ S are contained in [λmin, λmax]. Inspired by a step in the proof of Haario,
Saksman and Tamminen (2001, Theorem 1), we consider the convex combination of
Σ,Σ′ ∈ S, i.e.

Σt = (1− t)Σ + tΣ′ = Σ + t(Σ′ − Σ) .

While we do not require S to be convex, we know that Cd+ is indeed convex so that

Σt ∈ Cd+ for any t ∈ [0, 1]. In particular, ϕΣt is a well-defined d-dimensional Gaussian
distribution for any t ∈ [0, 1]. The purpose of this convex combination is the following
identity, resulting from the fundamental theorem of calculus:∫ 1

0

(
∂

∂t
ϕΣt(z)

)
dt = ϕΣt(z)

∣∣∣t=1

t=0
= ϕΣ(z)− ϕΣ′(z) .

This identity holds as long as ϕΣt(z) is differentiable w.r.t. t, but this will be verified
implicitly in the following calculations. We then proceed to relate the previous identity
to ||Σ− Σ′||F .

Logarithmic differentiation gives us

∂

∂t
ϕΣt(z) = ϕΣt(z)

∂

∂t
logϕΣt(z)

= −1

2
ϕΣt(z)

∂

∂t

[
d log(2π) + log det(Σt) + z>Σ−1

t z .
]

Then, using matrix derivative identities (Petersen and Pedersen, 2008), we find

∂

∂t
z>Σ−1

t z = tr
(
−Σ−1

t zz>Σ−1
t (Σ′ − Σ)

)
,
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Supplement to aMTM 15

which yields

∂

∂t
ϕΣt(z) = −1

2
ϕΣt(z) tr

(
Σ−1
t (Σ′ − Σ)− Σ−1

t zz>Σ−1
t (Σ′ − Σ)

)
.

Therefore, we find

∂

∂t
logϕΣt(z) = −1

2
tr
(
Σ−1
t (Σ′ − Σ)− Σ−1

t zz>Σ−1
t (Σ′ − Σ)

)
,

which can be bounded, using the triangle inequality, by∣∣∣∣ ∂∂t logϕΣt(z)

∣∣∣∣ 6 ∣∣tr (Σ−1
t (Σ′ − Σ)

)∣∣+
∣∣tr (Σ−1

t zz>Σ−1
t (Σ′ − Σ)

)∣∣ .
Now, we may use the general matrix norm inequality |tr(AB)| 6 ||A||F ||B||F to bound∣∣tr (Σ−1

t (Σ′ − Σ)
)∣∣ 6 ∣∣∣∣Σ−1

t

∣∣∣∣
F
||Σ′ − Σ||F ,

as well as ∣∣tr (Σ−1
t zz>Σ−1

t (Σ′ − Σ)
)∣∣ 6 ∣∣∣∣Σ−1

t zz>Σ−1
t

∣∣∣∣
F
||Σ′ − Σ||F

6 z>Σ−2
t z||Σ′ − Σ||F .

Hence, ∣∣∣∣ ∂∂t logϕΣt(z)

∣∣∣∣ 6 (∣∣∣∣Σ−1
t

∣∣∣∣
F

+ z>Σ−2
t z
)
||Σ′ − Σ||F .

Now, from the theory of Gaussian quadratic forms, we have∫ (
z>Σ−2

t z
)
ϕΣt(z)λ( dz) = tr

(
Σ−2
t Σt

)
= tr

(
Σ−1
t

)
,

which allows us to compute∫ (∣∣∣∣Σ−1
t

∣∣∣∣
F

+ z>Σ−2
t z
)
ϕΣt(z)λ( dz) =

∣∣∣∣Σ−1
t

∣∣∣∣
F

+ tr
(
Σ−1
t

)
.

Finally, the bounded eigenvalues yield the following bounds,

∣∣∣∣Σ−1
t

∣∣∣∣2
F

=

d∑
i=1

λ2
i (Σ
−1
t ) =

d∑
i=1

λ−2
i (Σt) 6 dλ−2

min ,

tr
(
Σ−1
t

)
=

d∑
i=1

λi(Σ
−1
t ) 6 dλ−1

min ,
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16 S. Fontaine and M. Bédard

which, in turn, give∫ (∣∣∣∣Σ−1
t

∣∣∣∣
F

+ z>Σ−2
t z
)
ϕΣt(z)λ( dz) 6

√
dλ−1

min + dλ−1
min 6 2dλ−1

min .

We conclude that∫
|ϕΣ(z)− ϕΣ′(z)|λ( dz) =

∫ ∣∣∣∣∫ 1

0

∂

∂t
ϕΣt(z) dt

∣∣∣∣λ( dz)

6
∫ ∫ 1

0

1

2
ϕΣt(z)

∣∣∣∣ ∂∂t logϕΣt(z)

∣∣∣∣ dtλ( dz)

=
1

2

∫ 1

0

∫ ∣∣∣∣ ∂∂t logϕΣt(z)

∣∣∣∣ϕΣt(z)λ( dz) dt

6
1

2

∫ 1

0

2dλ−1
min||Σ

′ − Σ||F dt

=
d

λmin
||Σ′ − Σ||F .

Proposition 3.6. Consider a family of MTM transitions {Pθ}θ∈Θ with Gaussian ran-
dom walk marginal proposal densities whose covariances are contained in a compact sub-
set of C+

d , the cone of symmetric positive-definite matrices. Suppose that the following
Lipschitz condition holds: there exists L <∞ such that, for all x, y ∈ X∣∣∣A(k)

θ (y|x)−A(k)
θ′ (y|x)

∣∣∣ 6 L||θ − θ′||2 . (S4)

Then, there exists C <∞ such that, for all functions f : X → R with ||f ||1 <∞,

||Pθf − Pθ′f ||1 6 C||f ||1||θ − θ
′||2 .

In particular, {Pθ}θ∈Θ is V -Lipschitz for V ≡ 1.

Proof. By definition, we have

||Pθf − Pθ′f ||1 = sup
x∈X
|Pθf(x)− Pθ′f(x)| .

For ||f ||1 <∞, we have

|f(x)|
||f ||1

6 1 , ∀ x ∈ X . (S5)
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Supplement to aMTM 17

We first consider the following development of Pθf(x)− Pθ′f(x) :

Pθf(x)− Pθ′f(x) =

∫
X
f(y)Pθ(y|x)λ( dy)−

∫
X
f(y)Pθ′(y|x)λ( dy)

=

∫
X
f(y) [Pθ(y|x)− Pθ′(y|x)]λ( dy)

=

∫
X
f(y) [Rθ(x)δx(y) + pθ(y|x)−Rθ′(x)δx(y)− pθ′(y|x)]λ( dy)

=

∫
X
f(y) [(Rθ(x)−Rθ′(x)) δx(y) + (pθ(y|x)− pθ′(y|x))]λ( dy) .

Then, using properties of integrals and the inequality (S5), we find

|Pθf(x)− Pθ′f(x)|
||f ||1

6
∫
X

f(y)

||f ||1
[|Rθ(x)−Rθ′(x)|δx(y) + |pθ(y|x)− pθ′(y|x)|]λ( dy)

6
∫
X

[|Rθ(x)−Rθ′(x)|δx(y) + |pθ(y|x)− pθ′(y|x)|]λ( dy)

= |Rθ(x)−Rθ′(x)|+
∫
X
|pθ(y|x)− pθ′(y|x)|λ( dy) .

Now, we note that

|Rθ(x)−Rθ′(x)| =
∣∣∣∣1− ∫

X
pθ(y|x)λ( dy)− 1 +

∫
X
pθ′(y|x)λ( dy)

∣∣∣∣
=

∣∣∣∣∫
X

[pθ′(y|x)− pθ(y|x)]λ( dy)

∣∣∣∣
6
∫
X
|pθ(y|x)− pθ′(y|x)|λ( dy) ,

which allows us to bound

|Pθf(x)− Pθ′f(x)| 6 2||f ||1
∫
X
|pθ(y|x)− pθ′(y|x)|λ( dy) . (S6)

Rearranging terms, we can write

pθ(y|x)− pθ′(y|x) =

K∑
k=1

A
(k)
θ (y|x)q

(k)
θ (y|x)−

K∑
k=1

A
(k)
θ′ (y|x)q

(k)
θ′ (y|x)

=

K∑
k=1

[
A

(k)
θ q

(k)
θ −A

(k)
θ′ q

(k)
θ′

]
(y|x)

=

K∑
k=1

[
A

(k)
θ q

(k)
θ −A

(k)
θ q

(k)
θ′ +A

(k)
θ q

(k)
θ′ −A

(k)
θ′ q

(k)
θ′

]
(y|x)

=

K∑
k=1

[
A

(k)
θ

(
q

(k)
θ − q

(k)
θ′

)
+
(
A

(k)
θ −A

(k)
θ′

)
q

(k)
θ′

]
(y|x) . (S7)
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18 S. Fontaine and M. Bédard

In that last expression, it is possible to directly bound the first term. Indeed, A
(k)
θ 6 1

and q
(k)
θ − q

(k)
θ′ may be bounded by Proposition 3.5:∫

X

∣∣∣∣∣
K∑
k=1

A
(k)
θ

(
q

(k)
θ − q

(k)
θ′

)
(y|x)

∣∣∣∣∣λ( dy) 6
K∑
k=1

∫
X

1 ·
∣∣∣q(k)
θ (y|x)− q(k)

θ′ (y|x)
∣∣∣λ( dy)

6
K∑
k=1

∫
X
|ϕΣ(k)(z)− ϕΣ′(k)(z)|λ( dz)

6
d

λmin

K∑
k=1

∣∣∣∣∣∣Σ(k) − Σ′(k)
∣∣∣∣∣∣
F

6
d

λmin

K∑
k=1

||θ − θ′||2 ,

=
Kd

λmin
||θ − θ′||2 , (S8)

where λmin > 0 is the smallest eigenvalue over covariances in K compact. The second

term of (S7) can be bounded using the Lipschitz condition on A
(k)
θ :∫

X

∣∣∣A(k)
θ −A

(k)
θ′

∣∣∣q(k)
θ′ (y|x)λ( dy) 6

∫
X
L||θ − θ′||2q

(k)
θ′ (y|x)λ( dy) = L||θ − θ′||2 . (S9)

Combining (S8) and (S9), we can finally bound the integral in (S6). Indeed, we find∫
X
|pθ(y|x)− pθ′(y|x)|λ( dy) 6

K∑
k=1

∫
X
A

(k)
θ

∣∣∣q(k)
θ − q

(k)
θ′

∣∣∣(y|x)λ( dy)

+

K∑
k=1

∫
X

∣∣∣A(k)
θ −A

(k)
θ′

∣∣∣q(k)
θ′ (y|x)λ( dy)

6
Kd

λmin
||θ − θ′||2 +KL||θ − θ′||2

6 K

(
d

λmin
+ L

)
||θ − θ′||2 ,

which concludes the proof.

The Lipschitz condition on the acceptance probability (S4) highly depends on the

specific instance of the aMTM algorithm implemented. In particular, the expression A
(k)
θ

involves the weight function w
(k)
θ , the acceptance probability α

(k)
θ and the conditional

densities q
(k)
θ . Hence, the choices of weights and covariance structure among candidates

influence how we can verify (S4) so we must resort to a case-by-case approach. Fontaine
(2019, Section 5.5.2) contains all the details so we only report the general ideas here.
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First, when the weight function is independent of θ (e.g. proportional to the target
density) and candidates are chosen to be independent, then we do not require any addi-
tional assumption.

When the weight function depends on θ, then we can extract some general sufficient
conditions. We require that the weight function and acceptance probability be Lipschitz
in θ uniformly over their arguments; for any θ 6= θ′ ∈ Θ2,

sup
y,y(−k),x,θ 6=θ′

∣∣w̄θ(y, y(−k)|x)− w̄θ′(y, y(−k)|x)
∣∣

||θ − θ′||2
<∞ ,

sup
y,y(−k),x,x

(k)
∗ ,θ 6=θ′

∣∣∣αθ(y, y(−k)|x, x(k)
∗ )− αθ′(y, y(−k)|x, x(k)

∗ )
∣∣∣

||θ − θ′||2
<∞ .

In the independent case, such conditions are easily verified by choosing functions that
have continuous gradients and by supposing Θ compact and convex. In the extremely
antithetic case, we can use similar arguments, but the details are more tedious since
the conditional densities q(k) lie in some strict subspace of XK−1. When candidates are
deterministic (e.g. RQMC or common random variable), these conditions become simpler
as the conditional densities become degenerate: we can then drop the dependence on y(−k)

and on x
(−k)
∗ .

3.3.3. Bounded updates

The set of parameters is given by

θ =
(
θ(1) , . . . , θ(K)

)
where, in general, each component consists of a moving average, a covariance and a scale
factor:

θ(k) =
(
µ(k),Σ(k), l(k)

)
, k = 1 , . . . ,K,

where l(K) = log λ(K). We denote by ||·||2 the L2-norm; for elements of θ that are matrices,
the contribution to ||θ|| will thus be the Frobenius norm ||·||F which corresponds to the
L2-norm of the vectorized matrix. At iteration n, the available information to be used
by the adaptation function is given by

Ξn =
(
kn, y

(1:K), x
(1:K)
∗

)
.

Hence, we can describe the update function as

Hθ (Ξn) =


H

(1)
θ (Ξn)

...

H
(K)
θ (Ξn)

 ,
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where H
(k)
θ corresponds to the update of θ(k) as introduced in (4.1). Then

H
(k)
θ (Ξn) =

(
H

(k)
µ,Σ (Ξn)

H
(k)
l,α (Ξn)

)
,

where H
(k)
µ,Σ corresponds to the (joint) update of µ(k) and Σ(k), and where H

(k)
l,α corre-

sponds to the update of l(k) using the acceptance probability.

Bounding H
(k)
l,α is easily achieved. In the ASWAM case, we have

H
(k)
l,α (Ξn) = I ({kn = k})

[
αθ

(
y; y(−k)|xn;x

(−k)
∗

)
− α∗

]
,

which can be bounded by∣∣∣H(k)
l,α (Ξn)

∣∣∣ 6 I ({kn = k})
∣∣∣αθ (y; y(−k)|xn;x

(−k)
∗

)
− α∗

∣∣∣ 6 1 .

For AM or RAM updates, H
(k)
l,α = 0.

Lemma 3.1. Let H
(k)
µ,Σ denote the AM or ASWAM update of (µ(k),Σ(k)). Then, if the

sample space X and parameter space Θ are both compact,

sup
θ∈K

∣∣∣∣∣∣H(k)
µ,Σ

∣∣∣∣∣∣
1
<∞ .

Proof. The AM and ASWAM updates are such that

H
(k)
µ,Σ (Ξn) = I({kn = k})

(
xn+1 − µ(k)

(xn+1 − µ(k))(xn+1 − µ(k))> − Σ(k)

)
.

Thus, H
(k)
µ,Σ only depends on θ, kn, and xn+1.

By definition, we have∣∣∣∣∣∣H(k)
µ,Σ

∣∣∣∣∣∣
1

= sup
(xn+1,kn)∈X ×{1 ,..., K}

∣∣∣∣∣∣H(k)
µ,Σ (Ξn)

∣∣∣∣∣∣
2
.

Obviously, the supremum over kn ∈ {1 , . . . ,K} is attained for kn = k because of the
term I ({kn = k}). Hence, we find the following bound∣∣∣∣∣∣H(k)

µ,Σ

∣∣∣∣∣∣
2
6
∣∣∣∣∣∣xn+1 − µ(k)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣(xn+1 − µ(k))(xn+1 − µ(k))> − Σ(k)

∣∣∣∣∣∣
F

6 ||xn+1||2 +
∣∣∣∣∣∣µ(k)

∣∣∣∣∣∣
2

+
∣∣∣∣xn+1x

>
n+1

∣∣∣∣
F

+ 2
∣∣∣∣∣∣µ(k)x>n+1

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣µ(k)µ(k)>

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣Σ(k)

∣∣∣∣∣∣
F
.

Assuming X and Θ compact, then xn+1, µ(k), and Σ(k) are all bounded so that
∣∣∣∣∣∣H(k)

µ,Σ

∣∣∣∣∣∣
2

is uniformly bounded for (x, k) ∈ X ×{1 , . . . ,K}, as well as for θ ∈ K.
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For the RAM update, we rewrite it as a Robbins-Monro recursion:

Σ
(k)
n+1 = S(k)

n

(
Id + γn+1 I ({kn = k})

[
αθ(y; y(−k)|xn;x

(−k)
∗ )− α∗

] un+1u
>
n+1

||un+1||22

)
S(k)>
n

= S(k)
n S(k)>

n + γn+1 I ({kn = k})S(k)
n

([
αθ(y; y(−k)|xn;x

(−k)
∗ )− α∗

] un+1u
>
n+1

||un+1||22

)
S(k)>
n

=: Σ(k)
n + γn+1H

(k)
Σn

(Ξn) ,

where

H
(k)
Σn

(Ξn) = I ({kn = k})S(k)
n

([
αθ(y; y(−k)|xn;x

(−k)
∗ )− α∗

] un+1u
>
n+1

||un+1||22

)
S(k)>
n ,

with un+1 = y − xn and Σ(k) = S(k)S(k)>.

Lemma 3.2. Let H
(k)
Σ denote the RAM update function of Σ(k). Then, if the sample

space X and parameter space Θ are both compact,

sup
θ∈K

∣∣∣∣∣∣H(k)
Σ

∣∣∣∣∣∣
1
<∞ .

Proof. The norm of H
(k)
Σ can be bounded as follows:

∣∣∣∣∣∣H(k)
Σ (Ξn)

∣∣∣∣∣∣
2
6

∣∣∣∣∣
∣∣∣∣∣S(k)

([
αθ(y; y(−k)|xn;x

(−k)
∗ )− α∗

] un+1u
>
n+1

||un+1||22

)
S(k)>

∣∣∣∣∣
∣∣∣∣∣
2

6
∣∣∣∣∣∣S(k)

∣∣∣∣∣∣
2

∣∣∣∣∣
∣∣∣∣∣[αθ(y; y(−k)|xn;x

(−k)
∗ )− α∗

] un+1u
>
n+1

||un+1||22

∣∣∣∣∣
∣∣∣∣∣
2

∣∣∣∣∣∣S(k)>
∣∣∣∣∣∣

2

6
∣∣∣∣∣∣S(k)

∣∣∣∣∣∣
2

∣∣∣∣un+1u
>
n+1

∣∣∣∣
2

||un+1||22

∣∣∣∣∣∣S(k)
∣∣∣∣∣∣

2

6
∣∣∣∣∣∣S(k)

∣∣∣∣∣∣
2

||un+1||22
||un+1||22

∣∣∣∣∣∣S(k)
∣∣∣∣∣∣

2
=
∣∣∣∣∣∣S(k)

∣∣∣∣∣∣2
2
.

For Θ compact, we find
∣∣∣∣S(k)

∣∣∣∣
2

to be uniformly bounded, which implies that
∣∣∣∣∣∣H(k)

Σ

∣∣∣∣∣∣
1

is uniformly bounded for θ ∈ Θ as well as for all Ξn. That is, supθ∈K

∣∣∣∣∣∣H(k)
Σ

∣∣∣∣∣∣
1
<∞.

3.3.4. Continuity of the convergence metric

Recall the metric used to compare the iterated transition to the target density:

∆n(x, θ) = ||Pnθ (·|x)− π(·)||TV .
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Lemma 3.3. Let F :W → R be a function defined by

F (w) =

∫
T
f(w, t)λ( dt) ,

where f : W×T → R is continuous w.r.t. (w, t) and where λ denotes the Lebesgue
measure on R. Suppose there exists a function g : T → R such that |f(w, t)| 6 |g(t)| for
all (w, t) ∈ W ×T with λ(|g|) <∞. Then, F is a continuous function of w on the whole
of W.

Proof. The function F is continuous on the whole of W if and only if limn→∞ F (wn) =
F (w) for any sequence wn → w. Then, let {wn}n∈N ⊆ W be an arbitrary sequence with
wn → w ∈ W and define, for all n ∈ N, fn : T → R by fn(t) = f(wn, t). By the continuity
of f w.r.t. w, we know that fn(t)→ f(w, t) point-wise. By hypothesis, we have

|fn(t)| = |f(wn, t)| 6 |g(t)| , n ∈ N .

Now, write

lim
n→∞

F (wn) = lim
n→∞

∫
T
f(wn, t)λ( dt) = lim

n→∞

∫
T
fn(t)λ( dt) = lim

n→∞
λ(fn(·)) .

By the Monotone Convergence Theorem, we find

lim
n→∞

F (wn) = λ
(

lim
n→∞

fn(·)
)

= λ (f(w, ·)) = F (w) ,

which concludes the proof.

Lemma 3.4. Let Pθ be a MTM transition using a given set parameters θ ∈ Θ. Then,
the acceptance probability through candidate k from the current state x to some other

state y, A
(k)
θ (y|x), is a continuous function of (x, y, θ) assuming that each of q

(−k)
θ , w̄(k)

and αMTM are continuous functions of their arguments and parameters, and that the

conditional densities q
(−k)
θ are uniformly bounded above by some integrable function q+ :

XK−1 → R>0.

Proof. This result is a direct consequence of Lemma 3.3. The complete argument may
be found in Fontaine (2019, Lemma 5.11).

Lemma 3.5. Let Pθ be a MTM transition using a given set parameters θ ∈ Θ. Then, the

integrated acceptance probability through candidate k from the current state x, A
(k)

θ (x),

is a continuous function of (x, θ) assuming that A
(k)
θ (y|x) is a continuous function of

(x, y, θ) and assuming that each q
(k)
θ (y|x) is a density, with respect to the Lebesgue

measure on Rd, such that there exists an integrable function q+ : X → R>0 with

q
(k)
θ (y|x) 6 q+(y) uniformly for (x, θ, k). Furthermore, the rejection probability Rθ(x)

is also a continuous function of (x, θ).
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Proof. This result is a direct consequence of Lemma 3.3. The complete argument may
be found in Fontaine (2019, Lemma 5.12).

For a Markov transition taking the form of a MH density, i.e.

P ( dy|x) = p(y|x)λ( dy) +R(x)δx( dy) , (S10)

we can write the iterated transition using the following recursion,

Pn( dy|x) = pn(y|x)λ( dy) +Rn(x)δx( dy),

where

pn(y|x) =

∫
X
pn−1(y|z)p(z|x)λ( dz) ,

with the convention p0(y|x) = δx(y).

Corollary 3.1. Under the setup and conditions of Lemma 3.5, the iterated MTM tran-
sition, pnθ (y|x), is a continuous function of (x, y, θ) for all n ∈ N.

Proof. We proceed by induction over n > 1 to show that pnθ (y|x) is continuous with
respect to (x, y, θ) and is uniformly bounded by Knq̄n−1q+(y), where q̄ = supX q

+ <∞.
For n = 1, we have

p1
θ(y|x) =

∫
X
δz(y)pθ(z|x)λ( dz) = pθ(y|x) =

K∑
k=1

A
(k)
θ (y|x)q

(k)
θ (y|x) ,

which is a sum of products of continuous functions and is therefore continuous. The
uniform bound is direct:

∣∣p1
θ(y|x)

∣∣ 6 K∑
k=1

∣∣∣A(k)
θ (y|x)q

(k)
θ (y|x)

∣∣∣ 6 K∑
k=1

1 · q+(y) = K · q+(y) = K1q̄1−1 · q+(y) .

For n > 1, we suppose that pn−1
θ (y|x) is continuous and uniformly bounded byKn−1q̄n−2q+(y).

We use Lemma 3.3; to this end, we let

F (w) = pnθ (y|x) =

∫
X
pn−1
θ (y|z)pθ(z|x)λ( dz) ,

the variables (x, y, θ) = w ∈ W with W = X 2×Θ, the integrated variable z = t ∈ T
with T = X , and the integrand

f(w, t) = pn−1
θ (y|z)pθ(z|x) .
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Since pn−1
θ (y|z) is continuous w.r.t. (y, z, θ) by induction hypothesis and since pθ(z|x) is

continuous w.r.t. (x, z, θ) by assumption (see the case n = 1), we find that f is a contin-
uous function of all its arguments. Also, the induction hypothesis implies the following
uniform bound∣∣pn−1

θ (y|z)
∣∣ 6 Kn−1q̄n−2q+(y) 6 Kn−1q̄n−2 sup

X
q+ = Kn−1q̄n−1 .

Hence, we find

|f(w, t)| 6
∣∣pn−1
θ (y|z)

∣∣|pθ(z|x)| 6 Knq̄n−1q+(z) =: g(t) .

Since q+ is integrable and K, q̄ <∞, we find that g is integrable for each fixed n. Finally,
Lemma 3.3 implies that F is continuous w.r.t. w, that is, pnθ (y|x) is continuous w.r.t.
(x, y, θ) ∈ X 2×Θ for each fixed n.

Theorem 3.2. Let {Pθ}θ∈Θ be a family of MTM transitions indexed by its set of pa-
rameters θ, and suppose that the target density π and each Pθ satisfy the conditions of
Proposition 3.2. Further suppose that Θ is compact and that the resulting chain {Xn}n∈N
is bounded in probability. Then, if the conditions of Lemma 3.5 hold, the adaptive chain
satisfies the bounded convergence condition.

Proof. We use a result by Craiu et al. (2015, Proposition 23) restated as Theorem 4.1
in the main text.

All conditions of the result are verified except the continuity of (x, θ) 7→ ∆n(x, θ).
Indeed, the MTM transitions all admit π as their invariant distribution because of the
detailed balance condition (Proposition 3.1). They are also ergodic with respect to π by
Proposition 3.2 and then Harris-ergodic with respect to π by Proposition 3.3.

To verify the continuity of ∆n, we proceed in a similar fashion to Roberts and Rosen-
thal (2007, Corollary 11) in the MH case. We develop ∆n using the decomposition of the
iterated transition (S10):

∆n(x, θ) = ||Pnθ (·|x)− π(·)||TV

= sup
B∈B(X )

|Pnθ (B|x)− π(B)|

= sup
B∈B(X )

∣∣∣∣∫
B

Pnθ ( dy|x)−
∫
B

π( dy)

∣∣∣∣
= sup
B∈B(X )

∣∣∣∣Rnθ (x)δx(B) +

∫
B

pnθ ( dy|x)−
∫
B

π( dy)

∣∣∣∣
= Rnθ (x) +

1

2

∫
X
|pnθ (y|x)− π(y)|λ( dy) .

By inspection of the last expression, we can show that ∆n is indeed a continuous function
of its arguments.

By Lemma 3.5, we know that Rnθ (x) is a continuous function of (x, θ).

imsart-bj ver. 2014/10/16 file: output.tex date: August 21, 2021



Supplement to aMTM 25

We then use Lemma 3.3 to show that the integral is indeed continuous w.r.t. (x, θ). By
Corollary 3.1, we know that pnθ (y|x) is continuous w.r.t. (x, y, θ). Since π is assumed to be
a density w.r.t. the Lebesgue measure, we have that |pnθ (y|x)− π(y)| is continuous w.r.t.
(x, y, θ). Thus, we only need a (x, θ)-uniform and integrable bound on |pnθ (y|x)− π(y)|.
By the triangle inequality, we have

|pnθ (y|x)− π(y)| 6 pnθ (y|x) + π(y) .

By Corollary 3.1, we find a uniform and integrable bound on the first term; the target
density is independent of (x, θ) and integrable:

|pnθ (y|x)− π(y)| 6 Knq̄n−1q+(y) + π(y) ∈ L1(λ) .

Hence, all conditions of Lemma 3.3 are verified, which implies that
∫
X |p

n
θ (y|x)− π(y)|λ( dy)

is continuous w.r.t. (x, θ). We conclude that ∆n is continuous w.r.t. (x, θ) since it corre-
sponds to a linear combination of continuous functions.
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